Mathematical modelling of a membrane-less redox flow battery based on immiscible electrolytes

e-Archivo Repository

e-Archivo estará en modo consulta durante los próximos días. Por favor, NO DEPOSITE ningún trabajo. Los enlaces a través del handle no están accesibles, si necesita hacer una búsqueda de sus publicaciones, pinche en "Navegar por" "Autores". Disculpen las molestias.

Show simple item record

dc.contributor.author Ruiz Martín, Desirée
dc.contributor.author Moreno Boza, Daniel
dc.contributor.author Marcilla, Rebeca
dc.contributor.author Vera Coello, Marcos
dc.contributor.author Sánchez Sanz, Mario
dc.date.accessioned 2021-10-29T09:00:34Z
dc.date.available 2021-10-29T09:00:34Z
dc.date.issued 2022-01
dc.identifier.bibliographicCitation Applied Mathematical Modelling, 101, Jan. 2022, Pp. 96-110
dc.identifier.issn 0307-904X
dc.identifier.uri http://hdl.handle.net/10016/33509
dc.description.abstract We present a mathematical model to study the steady-state performance of a membrane-less reversible redox flow battery formed by two immiscible electrolytes that spontaneously form a liquid-liquid system separated by a well defined interface. The model assumes a two-dimensional battery with two coflowing electrolytes and flat electrodes at the channel walls. In this configuration, the analysis of the far downstream solution indicates that the interface remains stable in all the parameter range covered by this study. To simplify the description of the problem, we use the dilute solution theory to decouple the calculation of the velocity and species concentration fields. Once the velocity field is known, we obtain the distribution of the mobile ionic species along with the current and the electric potential field of the flowing electrolyte solution. The numerical integration of the problem provides the variation of the battery current density Iapp with the State of Charge (SoC) for different applied cell voltages Vcell. A detailed analysis of the concentration density plots indicates that the normal operation of the battery is interrupted when reactant depletion is achieved near the negative electrode both during charge and discharge. The effect of the electrolyte flow on the performance of the system is studied by varying the Reynolds, Re and Péclet, Pe, numbers. As expected, the flow velocity only affects the polarization curve in the concentration polarization region, when is well below the equilibrium potential, resulting in limiting current densities that grow with Re......
dc.description.sponsorship This work has been partially funded by the Spanish Agencia Estatal de Investigación under projects (PID2019-106740RB- I00 and PID2019-108592RB-C41/AEI/10.13039/50110 0 011033), by Grant IND2019/AMB-17273 of the Comunidad de Madrid and by project MFreeB which have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 726217). D. Ruiz-Martín acknowledges the support of an FPI predoctoral fellowship (BES-2016-078629) under project ENE2015-68703-C2-1-R (MINECO/FEDER, UE) and the insigh- ful conversations with professor Mark Blyth during her research visit at the University of East Anglia (UK).
dc.format.extent 15
dc.language.iso eng
dc.publisher Elsevier Inc.
dc.rights ©2021 The Authors. Published by Elsevier Inc.
dc.rights This is an open access article under the CC BY-NC-ND license
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Membrane-less redox flow battery
dc.subject.other Immiscible electrolyte
dc.subject.other Interface instability
dc.subject.other Dilute solutions
dc.title Mathematical modelling of a membrane-less redox flow battery based on immiscible electrolytes
dc.type research article
dc.subject.eciencia Ingeniería Industrial
dc.subject.eciencia Matemáticas
dc.identifier.doi https://doi.org/10.1016/j.apm.2021.08.020
dc.rights.accessRights open access
dc.relation.projectID Gobierno de España. ENE2015-68703-C2-1-R
dc.relation.projectID Gobierno de España. BES-2016-078629
dc.relation.projectID Comunidad de Madrid. IND2019/AMB-17273
dc.relation.projectID Gobierno de España. PID2019-106740RB-I00
dc.relation.projectID Gobierno de España. PID2019-108592RB-C41
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/726217
dc.identifier.publicationfirstpage 96
dc.identifier.publicationlastpage 110
dc.identifier.publicationtitle APPLIED MATHEMATICAL MODELLING
dc.identifier.publicationvolume 101
dc.identifier.uxxi AR/0000028507
dc.affiliation.dpto UC3M. Departamento de Ingeniería Térmica y de Fluidos
dc.affiliation.grupoinv UC3M. Grupo de Investigación: Mecánica de Fluidos
dc.type.hasVersion VoR
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record