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a b s t r a c t 

We present a mathematical model to study the steady-state performance of a membrane- 

less reversible redox flow battery formed by two immiscible electrolytes that sponta- 

neously form a liquid-liquid system separated by a well defined interface. The model as- 

sumes a two-dimensional battery with two coflowing electrolytes and flat electrodes at 

the channel walls. In this configuration, the analysis of the far downstream solution indi- 

cates that the interface remains stable in all the parameter range covered by this study. 

To simplify the description of the problem, we use the dilute solution theory to decou- 

ple the calculation of the velocity and species concentration fields. Once the velocity field 

is known, we obtain the distribution of the mobile ionic species along with the current 

and the electric potential field of the flowing electrolyte solution. The numerical integra- 

tion of the problem provides the variation of the battery current density I app with the 

State of Charge ( SoC ) for different applied cell voltages V cell . A detailed analysis of the con- 

centration density plots indicates that the normal operation of the battery is interrupted 

when reactant depletion is achieved near the negative electrode both during charge and 

discharge. The effect of the electrolyte flow on the performance of the system is studied 

by varying the Reynolds, Re , and Péclet, Pe , numbers. As expected, the flow velocity only 

affects the polarization curve in the concentration polarization region, when V cell is well 

below the equilibrium potential, resulting in limiting current densities that grow with Re 

as j lim ∼ Re 0 . 3 . In addition, both the single-pass conversion efficiency ψ and the product 

ψ j lim decrease with Re . Concerning the later, the decay rate with Re exhibits a power law 

with an exponent that almost doubles previous theoretical predictions obtained by im- 

posing a prescribed velocity profile for the electrolyte in a membrane-less laminar flow 

battery with a liquid oxidant and gaseous fuel. The present work constitutes the first mod- 

elling attempt that simultaneously solves the fluid dynamical system formed by the two 

immiscible electrolytes and the electrochemical problem that determines the response of 

the membrane-less battery. The proposed model could be used as a valuable tool to opti- 

mize future flow battery designs based on immiscible electrolytes. 
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1. Introduction 

The intermittent nature of energy production from renewable energy sources such as wind or solar demands extensive 

energy-storage systems. A well established technology to store the energy generated in stationary applications are electro- 

chemical storage technologies such as rechargeable batteries, where the electricity is stored in chemicals to be later released 

upon demand [1] . Redox Flow Batteries (RFBs) present several advantages over conventional batteries, namely, total decou- 

pling of power and energy, flexible modular design and operation, excellent scalability and long-life cycling [2] . 

The major issues of the state-of-the-art vanadium RFBs are the high price, scarcity and potential toxicity of vanadium 

electrolytes and the high cost and low performance of the ion-selective membranes required to separate the anolyte from 

the catholyte. The current limitations of vanadium based electrolytes [3] have encouraged their substitution by organic re- 

dox couples that are cheaper, more abundant and environmentally friendly [4] . Unfortunately, regardless of the nature of 

the electrolytes, most RFBs rely on the use of expensive ion-selective membranes (40% of the total cost [5] ) that separate

the two active electrolytes while facilitating the exchange of the charge carriers. To reduce this cost, a current trend seeks

to remove the expensive membranes by using immiscible electrolytes in which the interface separating the catholyte and 

anolyte allows the exchange of active species [6] . Navalpotro et al. [4] demonstrated that an acidic solution and a hydropho-

bic ionic liquid, both containing dissolved quinoyl species, can be used to form a system that behaves as a battery without

a membrane, achieving a power density of 1 . 98 mW / cm 

2 [7] . Also, Bamgbopa et al. [8] built a RFB based on immiscible,

organic, all-iron liquid electrolytes to achieve a peak power density of 0 . 7 mW / cm 

2 . Different combinations of immiscible

redox electrolytes have been later tested to improve the system power density up to 3 mW / cm 

2 for nonaqueous-aqueous 

inmiscible electrolytes [9] and up to 23 mW / cm 

2 for aqueous-aqueous biphasic systems [10] . 

Some of the main challenges of membrane-less RFB are the low current densities achieved, enhanced crossover or cross- 

contamination, self-discharge at the interface or electrolyte mixing due to diffusion or gravity-induced mixing [2] . Among 

the potential problems we add here, as we will show later in Section 2 , mixing of the electrolytes as a consequence of flow

instabilities at large Reynolds numbers. 

It is important to mention that in most reported examples of membrane-less RFBs based on immiscible electrolytes 

all the electrochemical tests were done under static conditions. Experiments under flow are scarce in the literature. Also, 

most reactors used in RFBs are not valid to test this membraneless-concept due to the zero-gap configuration of filter-press 

reactors. An example of analysis of the effect of the inter-electrode gap on the cell potential can be found in [11] . Therefore,

new reactor designs that allow the formation of the two phases within the reactor are needed to validate the concept

under flowing conditions. In this scenario, multiphysics fluid-dynamic/electrochemical models might help to accelerate the 

development of proper reactor designs to demonstrate the membrane-less concept under flowing conditions. 

Unlike previous modelling effort s of membrane-less RFBs that either used a prescribed velocity profile for the electrolytes 

[12–14] or considered only one fluid phase [15,16] , the model presented here includes for the first time a full analysis of

both the fluid dynamical and electrochemical aspects of a membrane-less RFB with immiscible electrolytes. To this end, we 

assume the limit of very dilute solutions in order to decouple the calculation of the flow field from the electrochemical

problem that determines the species concentration field. This enables an a priori analysis of the stability of the interface 

separating the two electrolytes, which must remain stable for the flow battery to be operated in a controllable manner. 

As model configuration, we shall consider a slender two-dimensional (2D) channel of width h and length L � h , fed with

two liquid electrolyte solutions with flow rates per unit of length Q 1 and Q 2 , as sketched in Fig. 1 . The results presented in

the manuscript correspond to a channel height of the order of h = 1 cm and a length of the cell L = 10 cm. These values are
Fig. 1. Schematics of the problem, including the geometrical, fluid-dynamical, and electrochemical relevant parameters. The figure includes a sample cal- 

culation of the velocity field obtained for Q 2 /Q 1 = 1 , μ2 /μ1 = 0 . 0125 , Re = 10 and the geometrical parameters included in Table 1 . The thick red curve 

indicates the location of the interface � that separates the immiscible electrolytes. 
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Table 1 

Fluid and geometrical parameters. 

Parameter Value 

Reynolds Number Re = ρ1 ̄u 1 h 0 /μ1 0 < Re < 20 

Volumetric flow rate ratio Q 2 /Q 1 1 

Density ratio ρ2 /ρ1 1 

Viscosity ratio μ2 /μ1 0.0125 

Geometrical 

parameters 

h 0 /h 0.49 

H = (h 0 + �h ) /h 0.51 

L/h 10 

L 1 /h 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

similar to the dimensions of the proof-of-concept experimental battery (separation of the electrodes h � 2 cm and length 

L � 16 cm) developed by [4] . Notice that the slenderness L/h of the numerical model is slightly larger than the slenderness of

the experimental device to ensure a one-directional two-layer Poiseuille flow at the outlet of the computational domain.Both 

fluids, assumed to have constant density and viscosity, ρi and μi ( i = 1 , 2 ), are initially separated at the channel entrance

by a thin splitter plate of thickness �h � h and length L 1 � L , located at a distance h 0 ∼ h from the lower wall. To compute

the velocity and pressure fields within the fluid domain we use the Navier-Stokes equations together with the Arbitrary 

Lagrangian-Eulerian method to track the location of the interface separating both fluids as a function of the governing 

dimensionless parameters: viscosity, density and flow rate ratios, μ2 /μ1 , ρ2 /ρ1 and Q 2 /Q 1 , respectively, Reynolds number, 

Re = ρ1 Q 1 /μ1 , channel slenderness, h/L , and splitter-plate position, h 0 /h . 

The electrochemical cell under study is based on the flow of two immiscible liquid electrolytes between two metal 

flat electrodes, as shown in Fig. 1 . Following Navalpotro et al. [4] we consider organic molecules instead of vanadium

compounds, because of its abundance and lower toxicity and price. In particular, fluid 2 consists of an acidic solution of

hydroquinone (H 2 Q) while fluid 1 consists of the redox-active organic molecule parabenzoquinone (pBQ) dissolved in a 

hydrophobic liquid, either propylene carbonate (PC) or 1-butyl-1-methylpyrrolidinium bis(trifluoro-methanesulfonyl)imide 

(PYR 14 TFSI). In the latter case we assume that the solution is neutral to ensure the validity of dilute solution theory. Also,

following [4] , we consider that the concentration of the supporting electrolyte is much greater than the molar concentra- 

tion of the active species and the concentration of protons will basically remain constant, leaving the acidity of the catholyte 

unchanged. 

The half-cell redox reactions at the positive (fluid 2) and negative (fluid 1) electrodes are given in Eqs. (1) and (2) ,

respectively. 

H 2 Q 

charge −−−−−⇀ ↽−−−−−
discharge 

pBQ + 2e − + 2H 

+ (1) 

pBQ + e −
charge −−−−−⇀ ↽−−−−−

discharge 
pBQ 

− (2) 

During charge, hydroquinone (H 2 Q) in acidic media suffers a reversible oxidation to parabenzoquinone (pBQ) in one step, 

involving the exchange of 2 electrons and 2 protons whereas the parabenzoquinone (pBQ) in aprotic electrolyte undergoes 

a two consecutive reversible reduction reactions to radical anion (pBQ 

−) and dianion (pBQ 

2 −), exchanging 2 electrons in
total. However, the second reduction step was not observed experimentally during battery operation [4,10] so only the first 

reaction was considered here. 

2. The fluid mechanics problem 

As previously discussed, in the limit of very dilute solutions the velocity and concentration fields are decoupled and can 

be analysed independently. We shall therefore start studying the flow of two immiscible incompressible Newtonian fluids, 

with equal densities ρ1 = ρ2 and different viscosities, μ1 and μ2 , through the two-dimensional channel presented in Fig. 1 . 

The position of the interface � separating the two fluids is initially unknown and must be calculated as part of the solution.

The fluid dynamics is governed by the Navier-Stokes equations 

∇ · v i = 0 , ρi 

D v i 
Dt 

= ∇ · T i , x ∈ �i , i = 1 , 2 (3) 

in each fluid domain �i . In these equations x = (x, y ) is the position vector in two-dimensional Cartesian coordinates, t is

time, and T i = −p i I + μi (∇ v i + ∇ v T 
i 
) is the stress tensor, with p and v = (u, v ) denoting the pressure and velocity fields,

respectively, and D/Dt = ∂ /∂ t + v i · ∇ is the substantial derivative. 

2.1. Initial and boundary conditions 

Keeping in mind that our goal is to study the steady-state performance of the battery, we use a transient method to com-

pute the steady velocity field v and the location of the interface �. Therefore, the system of equations defined in (3) must
98 
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be supplemented with the appropriate initial and boundary conditions to be discussed below. At t = 0 , the flow is as-

sumed to be at rest, i.e., u = v = 0 everywhere in the computational domain, except at x = 0 , where we impose v = 0 and a

streamwise velocity u corresponding to fully developed laminar flows in each electrolyte, with respective volume flow rates 

Q 1 = 

∫ h 0 
0 

u d y and Q 2 = 

∫ h 
h 0 +�h u d y , such that 

u 
u 1 

= 

6 h 
h 0 

[ 
y 
h 

−
(
y 
h 

)2 h 
h 0 

] 
, 0 < y < h 0 , 

u 
u 1 

= 

Q 2 
Q 1 

6 h 0 
h 

1 

( 1 −H ) 
3 

[ 
( 1 + H ) y h −

(
y 
h 

)2 − H 

] 
, h 0 + �h < y < h, 

with H = (h 0 + �h ) /h and ū 1 = Q 1 /h 0 the average velocity of fluid 1. A homogeneous natural boundary condition T · n = 0

is imposed at x = L , with n denoting the outward unit normal vector at the outflow boundary of the domain, while non-slip

conditions u = v = 0 are imposed at the wall surfaces. 

At the fluid-fluid interface y = �(x, t) continuity of velocities and the jump condition on the stress tensor are enforced 

v 1 = v 2 , (4) 

n · ( T 1 − T 2 ) = σn ∇ · n , (5) 

where n represents the unit vector normal to the surface � pointing towards the more viscous fluid and σ is the surface 

tension, that we consider negligible in all calculations below σ = 0 . We describe the interface using the implicit equation

f (x, y, t) = �(x, t) − y = 0 . Because f = 0 on the interface at all times, the material derivative must satisfy 

∂ f 

∂t 
+ v i · ∇ f = 0 , (6) 

where v i denotes the velocity of the interface. 

2.2. Numerical method 

The system of equations described above is integrated using the finite element method for the spatial discretization using 

the software COMSOL Multiphysics [17] . Equations (3) are written in weak form ∫ 
V 

[ 
˜ p ∇ · v + ρ

D v 
Dt 

· ˜ v − p∇ · ˜ v + μ(∇ v + ∇ v T ) : ∇ ̃

 v 
] 
d V = 0 , (7) 

where ˜ p and ˜ v are the test functions for pressure and velocity, respectively. Unstructured quadrilateral meshes with Taylor- 

Hood elements are used to discretize Eqs. (3) for pressure and velocity. Near the center of the channel, the size of the

elements reached the maximum value �ξ/h = 3 × 10 −2 and was reduced near the walls, where we clustered the ele-

ments to reach the minimum element size �ξ/h = 3 × 10 −3 and a total of n 0 = 11638 elements. To check the indepen-

dence of the results with the grid, we monitored the position of the interface � at x/L = 1 reducing, progressively, the

maximum element size to increase the density of the mesh n , giving �/h = (0 . 7146 , 0 . 7141 , 0 . 7139 , 0 . 7139 , 0 . 7139) for

n/n 0 = (0 . 27 , 0 . 44 , 0 . 67 , 1 , 1 . 79) . The value n = n 0 with minimum element size �ξ/h = 0 . 003 was maintained in all the

results shown below. Keeping the number of elements n within the range indicated above, we checked that the grid did not

affect the results by comparing non-uniform meshes with different distributions. 

The fluid-fluid interface � is tracked using the Arbitrary Lagrangian-Eulerian (ALE) technique [18] , which enables to 

impose the kinematic boundary condition (6) along the interface by prescribing the normal velocity of the mesh. When the 

viscosity ratio μ2 /μ1 is close to unity, the displacement of the mesh elements is computed by solving a Laplace equation for

the displacement field, namely ∇ 

2 q = 0 , q = (q x , q y ) , with suitable boundary conditions. To ensure convergence with small

viscosity ratios μ2 /μ1 � 1 , a minimum mesh deformation energy strategy was applied in this case for the computation of 

the mesh displacement. 

The temporal discretization of the system of nonlinear partial differential equations is carried out using a second-order 

variable-step BDF method. At every time step, an iterative Newton method is used to solve the algebraic system of equations

that continues until the weighted Euclidean norm of the error vector falls below 10 −6 . As mentioned above, the initial

conditions corresponded to a quiescent state u = v = 0 with the interface located at � = h 0 + �h/ 2 . The time-dependent

solver was complemented with an automatic remeshing algorithm that redistributed the mesh elements along the curved 

interface �. 

The numerical method has been extensively verified in Appendix A by comparing in Fig. A.10 the computational results 

with the asymptotic solution achieved for x/L � 1 in the limit of quasi one-directional flow Re h/L � 1 . The largest Reynolds

number considered in this study satisfies Re ≤ Re c � 27 , where Re c represents the critical Reynolds above which we find

shear-flow instabilities in the less viscous fluid [19] at x = 0 . Below the above mentioned Reynolds number, the discon-

tinuity in the shear rate resulting from the viscosity jump at the interface initiates Yih’s instability [20] . The absolute or

convective nature of this instability, of relevance in order to anticipate the fluid dynamical behaviour of the battery, de- 

pends strongly on the viscosity ratio μ /μ and surface tension σ . The stability analysis included in Appendix A addresses 
2 1 
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Table 2 

Electrochemical parameters of the species in the positive electrode for the battery model obtained from [4] , except D H + [29] . 

Symbol Parameter Value 

D H 2 Q H 2 Q diffusion coefficient 4 . 10 × 10 −8 m 

2 / s 

D pBQ pBQ diffusion coefficient 4 . 10 × 10 −8 m 

2 / s 

D H + H + diffusion coefficient 9 . 33 × 10 −9 m 

2 / s 

K 0 H 2 Q H 2 Q standard rate constant 73 . 17 × (1 , 10 −3 ) Am/mol 

α f , αb Transfer coefficients 0.5 

c 0 H 2 Q Initial concentration of H 2 Q 10 mM 

c 0 
H + 

Initial concentration of H + 100 mM 

Table 3 

Electrochemical parameters of the species in the negative electrode for the battery model obtained from [4] , except D H + [30] [31] . 

Symbol Parameter Value 

D pBQ pBQ diffusion coefficient 5 . 80 × 10 −9 m 

2 / s 

D pBQ − pBQ − diffusion coefficient 8 . 64 × 10 −8 m 

2 / s 

D H + H + diffusion coefficient 3 . 0 × 10 −9 m 

2 / s 

K 0 pBQ pBQ standard rate constant 0 . 11 × (1 , 10 −3 ) Am/mol 

α f , αb Transfer coefficients 0.5 

c 0 pBQ Initial concentration of pBQ 20 mM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the worst case scenario σ = 0 , showing that a small perturbation in the flow that deforms the interface results in a pertur-

bation wave whose amplitude grows as it is convected downstream. Nevertheless, as can be seen in Fig. A.12 , for the range

of flow parameters considered in this work ( Table 1 ), this effect is temporary and the interface recovers its initial shape

once the perturbation has disappeared. In brief, the convective nature of the instability ensures the validity of the steady 

electrochemical analysis to be presented in the following sections. 

3. The electrochemical problem 

Numerical integration of the fluid mechanical problem stated above with the flow parameters Q 2 /Q 1 , μ2 /μ1 and Re 

specified in Table 1 provides the steady-state velocity field v and the location of the interface �. The spatial distribution of

the concentrations of active species is obtained in a second step by integrating the mass conservation equation for all species

participating in the positive and negative electrode redox reactions, as described in Eqs. (1) and (2) . The mass conservation

equation for species j = 1 , . . . , N takes the form [21] 

∂c j 
∂t 

+ ∇ · N j = 0 , (8) 

with c j the molar concentration. In the limit of dilute solutions, the molar flux of the j-th species, N j , is driven by convec-

tion, diffusion and migration, according to 

N j = v c j − D j ∇c j − ζ j z j F c j ∇φi , (9) 

where φi is the electrostatic or ionic potential, F is Faraday’s constant and z j is the charge number of the species j. In

writing Eq. 9 , we assumed that the activity coefficients are close to unity as a consequence of the dilute solution hypothesis

( [22] , page 95). The electrochemical mobility is given by the Nernst-Einstein equation ζ j = D j /RT , with D j the mass diffusion

coefficient of species j, T the temperature and R the universal gas constant. The interface � separating the two immiscible

electrolytes is permeable to mobile species. The diffusion coefficient D j of the species depends on the electrolyte in which

they are present and, similarly to the electrolyte density and viscosity, is defined as D j = D j, 1 for f > 0 (fluid 1) and D j = D j, 2 

for f < 0 (fluid 2), being D j, 1 and D j, 2 the diffusion coefficient of the species j in the anolyte, y < �, and catholyte, y > �,

respectively (see tables 2 and 3 for the values used in this study). 

The motion of charged species through the fluid induces a current that can be computed based on the molar flux ac-

cording to 

i = F v 
N ∑ 

j=1 

z j c j − F 

N ∑ 

j=1 

z j D j ∇ c j − κ∇ φi , (10) 

where κ = F 2 
∑ N 

j=1 z 
2 
j 
ζ j c j denotes the electrical conductivity of the solution. Hereafter, the sums run over j = 1 , . . . , N unless

stated otherwise. 

In aqueous electrochemical solutions and in a large fraction of non-aqueous electrolytes, the condition of electroneutrality ∑ 

z j c j = 0 holds closely everywhere. Note that although this condition is not satisfied in the Debye layers formed near the

charged boundaries, the influence of these layers is negligible due to their small characteristic thickness [23] and can be
100 
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neglected in first approximation. In this case, the first term in the right hand side of Eq. (10) vanishes and, in the absence

of charge accumulation ∇ · i = 0 , the electric potential φi is computed by solving 

∇ · i = ∇ ·
(
−κ∇φi − F 

∑ 

z j D j ∇c j 

)
= 0 (11) 

instead of using Poisson’s equation [21] . 

3.1. Electrode kinetics 

Assuming one-step electrochemical reactions, the dependence of the electrode current density j on the overpotential η
and on the active species concentrations at the electrode surface c R and c O is modelled using the Butler-Volmer equation

[24,25] 

j 

j 0 
= 

c R 
c ∗
R 

exp 

(
(1 − α) n e F 

RT 
η

)
− c O 

c ∗
O 

exp 

(
−αn e F 

RT 
η
)
, (12) 

where α is the transfer coefficient, which quantifies the ratio between the forward and backward reaction rates for 

a given applied potential, and n e is the number of electrons transferred in the overall reaction. Equation (12) holds

for both electrodes, the subscripts O and R representing the oxidized and reduced species in the redox reaction taking 

place on each electrode. Thus, at the positive electrode we have c O = c pBQ and c R = c H 2 Q , while at the negative electrode

c O = c pBQ and c R = c pBQ − . The superscript ∗ is used for the reference values on the bulk fluid. In the Butler-Volmer equa-

tion, j 0 = K 0 c ∗(1 −α) 
O 

c ∗α
R 

denotes the exchange current density, the rate at which the anodic and cathodic reactions proceed

at equilibrium, with K 0 the standard reaction rate constant, larger values of K 0 indicating faster reactions. Finally, the over-

potential at the electrode surface η = φelec − φi − E eq , measures the difference between the applied potential upon passage 

of current, φelec − φi , where φelec is the local electronic potential at the electrode surface, and the equilibrium (i.e., zero 

current) potential E eq . The latter, also known as open circuit voltage, is given by the Nernst equation 

E eq = 

˜ E 0 + 

RT 

n e F 
ln 

(
c ∗O 
c ∗
R 

)
, (13) 

in terms of the reference species concentrations and the standard reversible potential ˜ E 0 [22] . 

The equilibrium potential E eq is therefore a correction to the standard reversible potential (the maximum theoretical 

potential calculated as a function of the change of Gibbs free energy of the reactions at standard conditions), once non-

standard species concentrations are considered. The overpotential η therefore accounts for the activation and concentration 

losses [26] . 

3.2. Boundary conditions 

Assuming steady flow conditions, the system of equations given in (8), (9) and (11) must be supplemented with ap-

propriate boundary conditions. At the outlet section of the flow domain x = L , we impose zero flux of ionic potential and

species concentration 

c j ∇φi · n = 0 , and D j ∇c j · n = 0 (14) 

with n the unit outward normal vector. Whereas at the inlet section x = 0 , we impose zero flux of ionic potential c j ∇φi · n =
0 and Dirichlet boundary conditions for the species concentration, yielding 

y < h 0 ⇒ 

{
c pBQ = c 0 pBQ ( 1 − SoC ) 

c pBQ − = c 0 pBQ SoC 
(15) 

and 

y > h 0 + �h ⇒ 

⎧ ⎨ 

⎩ 

c H 2 Q = c 0 H 2 Q ( 1 − SoC ) 

c pBQ = c 0 H 2 Q SoC 

c H + = c 0 H + + 2 c 0 H 2 Q SoC , 

(16) 

Thus, in a stationary system, the concentration of the different species at x = 0 depends only on the state of charge ( SoC ) of

the battery, defined as the product-to-reactive concentration ratio SoC = c pBQ /c 
0 
H 2 Q 

= c pBQ −/c 0 
pBQ 

[27] . The numerical values

of the constants c 0 
pBQ 

, c 0 
H 2 Q 

and c 0 
H + used in the computations to be presented below are taken from [4] (see Tables 2 and

3 ). 

The Péclet number measures the relative importance of convection with respect to upstream diffusion of the differ- 

ent species Pe i = Re (ν1 /D i ) . A representative example is H 2 Q in the catholyte (fluid 2), with Pe � 10 4 calculated using

D 0 = 4 . 10 × 10 −8 m 

2 / s [4] , the data included in tables 2 and 3 and the kinematic viscosity of water-based electrolytes

ν = 10 −6 m 

2 /s. In our model, the electrochemical reactions at the electrodes are contemplated for x > L . These reactions
2 1 
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would induce changes in the up-stream concentration of the different species in a region of characteristic length l as a 

consequence of streamwise diffusion. The order of magnitude of this region l can be estimated by assuming that convective 

c i, 0 ̄u 1 and axial diffusion terms D j c i, 0 /l are of the same order of magnitude in Eq. (9) , yielding the scaling l/L ∼ (PeL/h ) −1 . 

From this expression we can easily check that large values of Pe indicate that the upstream influence of the electrochemical

reactions on the species concentration is constrained to a small region l � L . Therefore, its effect can be neglected in the

first approximation and the utilization of uniform species concentration in the boundary conditions at x = 0 specified before 

in (16) is justified. 

At the electrode surfaces y = (0 , h ) , L 1 < x < L , Faraday’s law relates the molar fluxes with the electrochemical reaction

rates 

N j · n = ±s j j/ (n e F ) , (17) 

with s j the stoichiometric coefficient for species j in the electrode reaction, and n e = (1 , 2) the number of electrons trans-

ferred in the reaction at the negative and positive electrodes y = (0 , h ) , respectively. Note that the sign in the right hand

side of (17) indicates whether species j is being consumed ( - ) or produced ( + ). 

Regarding the boundary conditions for the electronic potential, we impose zero voltage at the negative current collector 

[28] , so φelec is equal to the cell voltage V cell at the positive current collector. Then, the overpotentials are determined as

η1 = −φi at the negative electrode, y = 0 , and η2 = V cell − φi − E eq ,T at the positive electrode, y = h , where 

E eq ,T = E eq , 2 − E eq , 1 = E 0 + 

3 

2 

RT 

F 
ln 

[ 
SoC 

1 − SoC 

] 
(18) 

represents the global equilibrium voltage of the cell [4] and E 0 = 

˜ E 0 , 2 − ˜ E 0 , 1 = 1 . 4 V is the standard cell potential. From here

on, positive electrode variables and properties are denoted by the subscript 2, while subscript 1 is used for the negative

electrode. During our calculations, we set the cell potential V cell to compute the current through the current collectors j(x ) .

The average current is then calculated as I app = 

∫ L 
0 j(x ) d(x/L ) . Therefore, the conservation of charge at the electrodes reduces

to 

φelec , 1 = 0 at y = 0 and φelec , 2 = V cell at y = h, (19) 

At the interface, we impose continuity of species concentration and molar flux, 

c j, 1 = c j, 2 and N j, 1 = N j, 2 . (20) 

In addition, we impose continuity of current density and ionic potential, 

φi, 1 = φi, 2 and i 1 = i 2 , (21) 

The numerical solution of the system (8), (9) and (11) with the boundary conditions (14) - (19) is obtained using a continu-

ation method that is initiated by imposing φelec , 2 = E eq ,T , φ
0 
elec , 1 

= 0 , φ0 
i 

= η0 
1 

= η0 
2 

= 0 what gives an initially small current

density I app � 0 . The initial solution is then continued by slowly increasing (charge) or decreasing (discharge) φelec , 2 until

the final stationary result corresponding to the desired value of φelec , 2 = V cell is obtained. For each value of V cell , an iterative

Newton’s method is used to solve the algebraic system of equations. The iteration continues until the weighted Euclidean 

norm of the error vector falls below 10 −6 . 

4. Numerical results 

This section is devoted to describe the results of the numerical simulations of the membrane-less flow battery. As 

we did before with the fluid mechanics problem, we checked the independence of the electrochemical results with 

the grid, quantifying the computed limiting current density j lim 

by increasing the density of the mesh, giving j lim 

=
(3 . 483 , 3 . 464 , 3 . 470 , 3 . 471 , 3 . 472) mA/cm 

2 for n/n 0 = (0 . 29 , 0 . 4 , 0 . 81 , 1 , 1 . 81) and V cell = 0 . 1 V. The value n = n 0 with mini-

mum element size �ξ/h = 0 . 003 was maintained in all the results shown below. 

In this section we dedicated special attention to the influence of the state of charge (SoC) and the Reynolds number on

the performance of the cell operating both in discharge, V cell < E eq ,T , and charge, V cell > E eq ,T , modes. Apart from the effect

on the flow velocities discussed in Appendix A , the Reynolds number has a significant effect on the transport of active

species in the electrolytes. Once the viscosity and mass diffusivities of the different species are fixed, larger flow velocities 

imply larger Re and Pe , what directly affects the overpotential distribution along the electrodes, the limiting current densities 

and the polarization curves. 

4.1. Influence of the state of charge ( SoC ) 

The state of charge ( SoC ) measures how much charge is left in the battery. Its influence on the overall cell voltage during

discharge, V cell < E eq ,T , is shown on the left plot of Fig. 2 for two representative current densities I app . To calculate this

figure, the applied voltage is modified so that the average current densities remain constant and equal to I app = 0 . 25 and

I app = 1 mA/cm 

2 . As expected, the overall voltage increases smoothly with the state of charge except at small SoC , when the

cell voltage undergoes a swift variation as a consequence of pBQ 

− depletion at the negative electrode y = 0 as illustrated
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Fig. 2. (a) Variation of the applied cell voltage and (b) the negative ( η1 ) and positive ( η2 ) electrode overpotentials with SoC during the discharge of the 

membrane-less RFB. During our calculations, the applied voltage V cell is varied to ensure constant average current densities at the electrodes I app = 0 . 25 

mA/cm 

2 ( �) and I app = 1 mA/cm 

2 ( ◦), simulating the galvanostaic operation of RFBs in experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Fig. 3 for SoC = 0 . 05 and V cell = 0 . 56 V. Slight increments in SoC avoid the depletion of the charged ion pBQ 

− near the

anode electrode, which results in a rapid drop of the negative overpotential and a swift growth of the cell voltage at small

SoC to maintain the current densities constant. 

Indeed, the variation of the anode overpotential η1 with the State of Charge, depicted in the right plot of Fig. 2 for

I app = 0 . 25 mA/cm 

2 and I app = 1 mA/cm 

2 , shows a sudden increase in η1 at low SoC that is closely related to the above-

mentioned reactant depletion effect. To satisfy Eq. (12) while keeping the anode current density constant, the overpotential 

increases as the concentration of pBQ 

− becomes small. The variation of the absolute values of the negative and positive 

electrode overpotentials is more gradual near SoC = 1 , and only small increments in the cell voltage are needed to keep the

current density constant, as observed in Fig. 2 . This trend agrees well with the results obtained previously for vanadium

RFBs (e.g., [27] ). 

Illustrative concentration density plots of pBQ and pBQ 

− of the cell in discharge mode are plotted in Fig. 3 for Re = 10 ,

SoC = 0 . 05 , V cell = 0 . 56 V and I app = 0 . 25 mA/cm 

2 . Reactant depletion is clearly observed near the negative electrode y = 0 ,

where the strong gradient of pBQ 

− concentration hampers the normal operation of the battery. Reducing the gradient of the 

active species near the electrodes is therefore crucial to achieve higher current and power densities, the small diffusivity of 

the active species being the most limiting factor affecting overall cell performance at low SoC conditions. To assess the effect

of the species diffusivity in the results, and considering D 

0 
pBQ − = 8 . 64 × 10 −8 m 

2 /s as the baseline case, Fig. 4 shows the

polarization curves V cell vs. I app computed with D pBQ − = (0 . 1 , 1 , 10) D 

0 
pBQ − . As shown in the figure, the overall performance of

the cell improves as D pBQ − is increased, giving, in particular, significantly higher limiting currents as a consequence of the 

enhanced availability of active species near the electrode due to the faster diffusion of pBQ 

−. 
As previously discussed, during charge an external voltage V cell > E eq ,T is applied to the cell resulting in the formation

of pBQ and pBQ 

− at the positive and negative electrodes, respectively. The variation of the applied voltage V cell with SoC is

shown in Fig. 5 during the charge of the battery. As in Fig. 2 , the applied voltage is modified so that the average current

densities remain constant and equal to I app = 0 . 25 and I app = 0 . 70 mA/cm 

2 , simulating the galvanostatic operation of RFB

typically used in experiments. The curve trend observed in this figure is similar to that shown before in Fig. 2 , with reactant

depletion found now near the negative electrode at SoC = 0 . 9 . As shown in Fig. 3 (b), it is the large gradient of PBQ near the

negative electrode in fluid 1 what strongly deteriorates the cell performance in this case. 

Changes in the standard rate constant K 0 appearing in the Butler-Volmer equation (12) through the exchange current 

density j 0 = K 0 c ∗(1 −α) 
O 

c ∗α
R 

are also expected to affect the polarization curve to a great extent. One of the strategies that can

be followed to modify K 0 is to deposity different types of inorganic materials, such as metal oxides, clays, and zeolites, can

be deposited on electrode surfaces [26] to improve the reaction rate. 

Fig. 6 illustrates the effect of increasing the exchange current density j 0 by increasing the standard rate constant K 
0 

by a factor of 10 3 . This has a strong effect on the activation polarization region, so that while the limiting current density

is not substantially changed, the polarization curve exhibits much larger current densities for a given applied voltage. For 

the two values of the standard rate constant considered K = K 0 and K = 10 0 0 × K 0 , with the standard rate constants K 0 

of the positive and negative half-cell reactions given in tables 2 and 3 , the current density obtained for a given applied

voltage is, for example, I app = 0 . 735 and I app = 3 . 037 mA/cm 

2 for V cell = 0 . 75 V during charge. The current densities I app =
0 . 087 and I app = 1 . 466 mA/cm 

2 were obtained for V cell = 1 . 75 V during discharge. As the change in K does not affect the

ohmic resistance of the cell, the slope of the polarization curve remains almost identical for the range of applied voltages

considered, with the differences only manifesting near open circuit conditions, when V cell approaches E eq . 
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Fig. 3. a) Density plot of pBQ (catholyte y > �) and pBQ − (anolyte y < �) concentration for Re = 10 , V cell = 0 . 56 V ( I app = 0 . 25 mA/cm 

2 ) at SoC = 

0 . 05 during discharge operation. b) Density plot of H 2 Q (anolyte y > �) and pBQ − (catholyte y < �) concentration for Re = 10 , V cell = 2 . 02 V ( I app = 0 . 25 

mA/cm 

2 ) at SoC = 0 . 90 during charge operation. Transverse concentration profiles of a) pBQ and pBQ − and b) H 2 Q and pBQ at x = 10 are shown in the 

rightmost panel of the plots. 

 

 

 

 

 

 

 

4.2. Influence of the Reynolds number 

Figs. 7 and 8 show polarization curves for SoC = 0 . 5 and different Reynolds numbers for the cell operating under dis-

charge and charge modes, respectively. In the limit of low current densities (activation polarization region), the performance 

of the cell is independent of the flow field, the polarization curves collapsing as the applied voltage approaches the open

circuit voltage. The effect of increasing both Re and Pe numbers becomes evident at small (large) applied cell voltages, 

concentration polarization region, when the cell operates in discharge (charge) mode. The higher concentrations of active 

species sustained by convection near the electrodes at larger Re prevent reactant depletion and enable the electrochem- 

ical reactions to reach higher limiting current densities. In particular, the limiting current density is seen to increase as 

j lim 

∝ Re α , with α = 0 . 31 for V cell = 0 . 10 V during discharge and α = 0 . 32 for V cell = 2 . 5 V during charge operation, as shown

in the right plots of Figs. 7 and 8 , respectively. The value of α computed here is very similar to those predicted by Braff et al.

[6] , α = 1 / 3 , and Lisboa et al. [15] , in a membrane-less flow battery with flow-by configuration similar to the one studied

here. It is worth noting that the exponent 1 / 3 reported in [6] emerges theoretically in the first Lévêque problem [32] cor-

responding to the heat (mass) transfer problem in a developed laminar velocity profile with prescribed wall temperature 

(concentration), while the slightly smaller values obtained here are compatible with more complex boundary conditions 

[33] . 

Following [13] , the single-pass conversion efficiency � of the cell is defined as the ratio of reactant consumed at the

electrode to the convective flux of reactant into the channel 

� = 

∫ L 
0 

N pBQ | y = h · n d x 

∫ h 
h 0 +�h 

c pBQ v · n d y 

∣∣∣x =0 

. (22) 

In their boundary layer analysis, Braff et al. [13] calculated the asymptotic value of the product � j lim 

obtaining a constant 

value for a plug-flow velocity profile and a continuous decay � j ∼ Re −1 / 3 for a fully-developed Poiseuille velocity pro- 
lim 
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Fig. 4. Polarization curves at SoC = 0 . 5 , Re = 10 for different diffusion coefficients of species as indicated in the legend, with D 0 
pBQ −

= 8 . 64 × 10 −8 m 

2 / s the 

baseline diffusion coefficient. 

Fig. 5. (a) Variation of the cell voltage and (b) the negative ( η1 ) and positive ( η2 ) electrode overpotentials with SoC during the charge of the membrane- 

less RFB. During our calculations, the applied voltage V cell is varied to ensure constant average current densities at the electrodes I app = 0 . 25 mA/cm 

2 ( �) 

and I app = 0 . 70 mA/cm 

2 ( ◦), simulating the galvanostatic operation of RFBs in experiments.. 

Fig. 6. Effect of the standard reaction constant ( K 0 ) on the polarization curve for Re = 10 , SoC = 0 . 5 during (a) discharge and (b) charge operation. 
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Fig. 7. (a) Discharge polarization curves for different Reynolds numbers: Re = 1 (red dashed line), Re = 5 (blue dotted line), Re = 10 (green dashed-dotted 

line), Re = 15 (purple dashed-dotted-dotted line), Re = 20 (orange dotted-fine line). (b) Variation of the limiting current density with the Reynolds number 

for V cell = 0 . 1 V. Both figures are calculated at 50% SoC. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 8. (a) Charge polarization curves for different Reynolds numbers: Re = 1 (red dashed line), Re = 5 (blue dotted line), Re = 10 (green dashed-dotted 

line), Re = 15 (purple dashed-dotted-dotted line), Re = 20 (orange dotted-fine line). (b) Variation of the limiting current density with the Reynolds number 

for V cell = 2 . 5 V. Both figures are calculated at 50% SoC. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 9. (a) Variation of the single-pass conversion efficiency with Reynolds number and (b) the limiting current-single-pass conversion efficiency product 

with the Reynolds number for V cell = 0 . 70 V at SoC = 0 . 5 . 
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file. The numerical simulations carried out in this work allow the computation of the conversion efficiency � plotted in 

Fig. 9 using the parameters included in Table 1 . Our results indicate that � decreases with Re in consonance with the the-

oretical results by [13] . However, the product � j lim 

scales here as Re λ with λ = −0 . 62 , as shown in Fig. 9 (b). The computed

decay exponent is almost twice as large as that predicted theoretically by [13] , which may be due to the differences be-

tween the hydrodynamic configurations of both systems. Better efficiencies are expected to occur for different values of the 

ratio Q 2 /Q 1 . 

5. Conclusions 

This work constitutes the first modelling attempt that addresses both the fluid dynamical and electrochemical aspects 

of a membrane-less redox flow battery operated with two immiscible electrolytes. Using as input the geometrical and fluid 

dynamical parameters specified in Table 1 and the electrochemical parameters of Tables 2 and 3 , the model is capable of

computing the complex multiphase flow and then predicting the polarization curves and the concentration of the active 

species in both charge and discharge modes. In particular, polarization curves for different flow rates ( Re ) and states of

charge (SoC) have been obtained in both operation modes. 

On a fundamental level, at low flow rates (low Re ) the membrane-less cell under study yields maximum power densities

between 1 and 1.75 mW/cm 

2 in discharge at V cell = 0 . 5 V and between 1.5 and 4 mW / cm 

2 in charge at V cell = 2 V , com-

parable to the experimental proof-of-concept values reported in [4] in a quiescent flow cell. This result is fairly insensitive

to changes in the flow, with maximum power densities that remain almost constant for Re > 10 , at least in the range of

parameters considered here: Q 2 /Q 1 = 1 , μ2 /μ1 = 0 . 0125 and Re ≤ 20 . 

During charge and discharge, the performance of the battery is limited by reactant depletion at the negative electrode. 

Swift changes of the applied cell voltage are necessary to keep a constant current density I app when the SoC is near full

charge/discharge. This is a direct consequence of the increment of the absolute values of the overpotentials induced by high 

gradient concentrations near the electrode. The efficiency of the battery and the maximum current density are therefore 

strongly dependent on the availability of reactants close to the electrodes. Our numerical tests indicate that the maximum 

current density increases fourfold when the diffusivity of active species pBQ 

− in fluid 1 is multiplied by a factor 10. 

Further improvement in the species diffusion coefficients by an appropriate engineering of the electrolytes could boost 

the performance of the cell. Similarly, our results show that the limiting current density increases with Re (or the Péclet 

number) under charge and discharge modes. In both cases, the limiting current density increases with the flow rate follow- 

ing the power law j lim 

∝ Re α , with α � 0 . 3 , similar to the dependence predicted by [6] and [15] using a prescribed profile

for the velocity of the electrolyte. 

Once demonstrated the validity of the numerical model presented here, an optimization of the fluid and geometrical 

parameters of the cell and the improvement of the solubility of the active molecules in the electrolyte will offer design

alternatives to improve the behaviour of the cell, measured in terms of current, power and, notably, energy density. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

Acknowledgments 

This work has been partially funded by the Spanish Agencia Estatal de Investigación under projects (PID2019-106740RB- 

I00 and PID2019-108592RB-C41/AEI/10.13039/50110 0 011033), by Grant IND2019/AMB-17273 of the Comunidad de Madrid 

and by project MFreeB which have received funding from the European Research Council (ERC) under the European Union’s 

Horizon 2020 research and innovation program (Grant Agreement No. 726217). D. Ruiz-Martín acknowledges the support of 

an FPI predoctoral fellowship (BES-2016-078629) under project ENE2015-68703-C2-1-R (MINECO/FEDER, UE) and the insigh- 

ful conversations with professor Mark Blyth during her research visit at the University of East Anglia (UK). 

Appendix A. Verification of the numerical method 

To verify the numerical method, we compare in Fig. A.10 the velocity profiles computed numerically at the outlet section 

of the computational domain, x = L , with the quasi-one-directional analytical profiles obtained in the limit of very slender

flows Re h/L � 1 . In this limit, Eqs. (3) can be integrated to give 

u 

ū 1 
= 

6 h 0 
h 

[
B (y/h ) − (y/h ) 2 

3 B (�/h ) 2 − 2(�/h ) 3 

]
, y < � (A.1) 

u 

ū 1 
= 

6 h 0 
h 

1 

μ2 /μ1 

[
1 − (y/h ) 2 + B (y/h − 1) 

3 B (�/h ) 2 − 2(�/h ) 3 

]
, y > � (A.2) 
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Fig. A.10. Computed (dashed lines) and asymptotic (solid lines) values of the interface location separating the electrolytes �/h as a function of the viscosity 

ratio μ2 /μ1 . The inset depicts the velocity profiles at x = L for Re = 10 and different values of μ2 /μ1 . The computed velocity profiles are plotted using 

dashed lines while the asymptotic solution (A .1) –(A .2) are plotted using solid curves. 

Fig. A.11. (a) Neutral stability diagram for the interfacial mode in the (Q 2 /Q 1 , k ) -plane obtained for μ2 /μ1 = 0 . 4 , Re = 10 . Solid lines show the results of 

the linear stability carried out in [34] while markers illustrate our numerical results. (b) Variation of the real and imaginary growth rates with the wave 

number for the downstream unidirectional solution for μ2 /μ1 = 0 . 0125 , Re = 20 . 

 

 

 

 

 

 

 

 

 

 

 

with B = [(1 − μ2 /μ1 ) (�/h ) 2 − 1] / [(1 − μ2 /μ1 )(�/h ) − 1] . The interface is then located at y = � to ensure mass conserva-

tion (Q 1 + Q 2 ) /Q 1 = 1 + Q 2 /Q 1 = (h/h 0 ) 
∫ 1 
0 (u/ ̄u 1 ) d(y/h ) . The velocity profiles given above in (A.1) and (A.2) are compared

in Fig. A.10 with the numerical solution for a series of fluids with μ2 /μ1 = (0 . 1 , 0 . 05 , 0 . 0125) in a slender computational

domain with length L/h = 10 , Re = 10 and Q 2 /Q 1 = 1 . The match between the analytical and numerical results is very good

in all cases tested except for μ2 /μ1 � 1 . Nevertheless, the small differences observed between the curves in Fig. A.10 in the

case μ2 /μ1 = 0 . 0125 disappeared when a longer computational domain was used, thus leaving enough space for the flow

to become fully developed. 

To further verify the numerical method, we studied the stability of the far field solution x/L � 1 associated with the

discontinuity in the shear rate due to the viscosity jump across the interface [20] . To this end, we considered the most

unstable condition, found when the surface tension between the two liquids is negligible σ = 0 . To avoid the interference

with shear-flow instabilities, that arise at Reynolds numbers Re > Re c = 27 . 13 [19] and trigger the onset of turbulence, this

stability analysis is carried out at Re = 10 , well below Re c . To do so, the base state flow given by (A.1) and (A.2) and the

interface location are subjected to a normal-mode disturbance of the form 

( ̄u , ̄v , �̄) = (u, 0 , �) + A (1 , 1 , 1) exp [ ik (x − ct) ] , (A.3) 
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Fig. A.12. (a) Perturbed interface profiles for μ2 /μ1 = 0 . 0125 , Q 2 /Q 1 = 1 and Re = 20 at ˆ t /t 1 = 5 . 5 (red), ˆ t /t 1 = 6 . 5 (blue), ˆ t /t 1 = 7 . 5 (green) and ˆ t /t 1 = 8 . 5 

(yellow), with t 1 = h/ ̄u 1 and ˆ t is time after the perturbation has been switched off. The dotted line represents the unperturbed interface profile. (b) 

Evolution with time ̂  t of the position of the maximum amplitude of the perturbation along the x axis. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where k and c = c r + ic i are the wave number and phase velocity of the perturbation, with k, c r and c i ∈ R , and A/h ∼
O (10 −3 ) a small amplitude that ensures that the results of our computations can be compared with the linear stability

analysis of Blyth and Pozrikidis [34] . The stationary solution is then unstable when kc i > 0 . 

The results of our computations are summarized in the neutral stability diagram depicted in Fig. A.11 . In this figure we

compared the wavelength k that triggers an unstable behaviour of the base solution of our code with the numerical results

obtained in [34] for a viscosity ratio μ2 /μ1 = 0 . 4 . According to Fig. A.11 (a), independently of the mass flow ratio Q 2 /Q 1 ,

there is always a range of perturbation’s wave numbers that makes the solution unstable. 

The nature of this instability is, however, relevant to anticipate the working behaviour of the battery. In the range of

parameters considered in our study ( Table 1 ), Valluri et al. [35] anticipated that an initially localized pulse will be amplified

in a moving reference frame travelling with the perturbation but will be damped in a stationary reference frame, recovering 

the unperturbed solution after a sufficiently long time. To check this point, we follow the methodology presented in [35] and

introduce a small-amplitude interfacial perturbation at x = 0 . 7 on the form � + A (t) , with A a random-phase perturbation

defined as 

A (t) = 

∫ ∞ 

0 

∣∣ ˆ A (w f ) 
∣∣e i [ ω f t+ θ (ω f )] d ω f � 

A 0 
N f 

N f ∑ 

j=0 

e i ( jω max t/N f + θk ) (A.4) 

with A 0 = 0 . 025 , ω max = 4 . 5 > 2 ω M 

, N f = 1500 and the phase 0 < θk < 2 π generated randomly. The cut-off frequency ω max 

is defined as roughly twice the real frequency at which the temporal growth rate kc i is maximum. Fig. A.11 (b) illustrates the

variation of the oscillation frequency kc r and growth rate kc i of the instability in terms of the wavelength k for Q 2 /Q 1 = 1 ,

Re = 20 and μ2 /μ1 = 0 . 0125 (the potentially most unstable conditions for our battery model). This figure, in particular

determines the wavelength k = 25 . 51 and frequency ω M 

= kc r = 2 . 11 at which the growth rate is maximum. 

The procedure starts by calculating a steady state solution by eliminating the time derivatives in Eq. (3) . Then, the

unsteady computation starts by introducing at t = 0 a perturbation such as the one defined in (A.4) . The perturbation con-

tinues active during a few seconds before it stops and the unsteady calculations carry on describing the behaviour of the

interface. The results are shown in Fig. A.12 for Re = 20 , μ2 /μ1 = 0 . 0125 and Q 2 /Q 1 = 1 . In this figure we depicted the time

evolution of the interface at different times after the perturbation is shut off. The results included in this figure illustrates

the convective nature of the instability as the perturbation abandons the domain through the rightmost boundary x/h = 10 

and the interface returns to its stationary shape. 
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