Citation:
Martínez-Pérez, L. & Rodríguez, J. M. (2020). New Bounds for Topological Indices on Trees through Generalized Methods. Symmetry, 12(7), 1097.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España) Ministerio de Ciencia e Innovación (España)
Sponsor:
The first author was partially supported by a grant from Ministerio de Ciencia, Innovación y Universidades (PGC2018-098321-B-I00), Spain; the second author was partially supported by two grants from Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2017-90584-REDT), Spain.
Project:
Gobierno de España. MTM2016-78227-C2-1-P Gobierno de España. PGC2018-098321-B-I00 Gobierno de España. MTM2017-90584-REDT
Keywords:
First variable zagreb index
,
Narumi-Katayama index
,
Modified Narumi-Katayama index
,
Wiener index
,
Topological indices
,
Schur-convexity
,
Trees
Topological indices are useful for predicting the physicochemical behavior of chemical compounds. A main problem in this topic is finding good bounds for the indices, usually when some parameters of the graph are known. The aim of this paper is to use a unifieTopological indices are useful for predicting the physicochemical behavior of chemical compounds. A main problem in this topic is finding good bounds for the indices, usually when some parameters of the graph are known. The aim of this paper is to use a unified approach in order to obtain several new inequalities for a wide family of topological indices restricted to trees and to characterize the corresponding extremal trees. The main results give upper and lower bounds for a large class of topological indices on trees, fixing or not the maximum degree. This class includes the first variable Zagreb, the Narumi–Katayama, the modified Narumi–Katayama and the Wiener index.[+][-]
Description:
This article belongs to the Special Issue Analytical and Computational Properties of Topological Indices.