Publication:
Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: Application to sulfamethoxazole and trimethoprim

Loading...
Thumbnail Image
Identifiers
Publication date
2011-12-15
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/ POT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/ POT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 m depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 g/mL, providing a detection limit of 3.85 g/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiomet-ric cell on the LTCC/ POT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with aver-age slopes −54.7 (SMX) and +57.8 (TMP) mV/ decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.
Description
Keywords
Biparametric analysis, Ceramic tapes, Miniaturization, Potentiometry, Sulfamethoxazole, Trimethoprim
Bibliographic citation
Biosensors and Bioelectronics, (2011), 30(1), pp.: 197-203.