Publication:
5G-Crosshaul: an SDN/NFV control and data plane architecture for the 5G integrated Fronthaul/Backhaul

Loading...
Thumbnail Image
Identifiers
Publication date
2016-09-05
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
John Wiley & Sons, Ltd.
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
This paper presents the control and data plane architecture design for a 5G transport solution (5G-Crosshaul) with the aim of integrating the fronthaul and backhaul network segments in a common transport stratum. The control plane relies on the Software-defined networking/Network Functions Virtualization concept to control and orchestrate the different elements of the network (the 5G-Crosshaul control infrastructure). The data plane is based on an mixed optical/packet-based forwarding entity (the 5G-Crosshaul forwarding element) that leverages the benefits of optical passthrough with the statistical multiplexing of packet-based transmission, working on top of a common frame format for both, fronthaul, and backhaul traffic (the 5G-Crosshaul common frame). In addition to the main architecture design, this work includes the impact of providing multi-tenancy support into the architecture of the overall system, in order to share the costs of building and operating the infrastructure among different operators. This architecture opens the 5G transport network as a service for innovative network applications on top (such as multi-tenancy, and resource management), provisioning the required network and IT resources in a flexible, cost-effective, and abstract manner. The proposed design supports the concept of network slicing pushed by the industry for realizing a truly flexible, sharable, and cost-effective future 5G system.
Description
Keywords
5G transport network, SDN NFV integrated fronthaul-backhaul transport network architecture, 5G-crosshaul, RAN
Bibliographic citation
Transactions on Emerging Telecommunications Technologies, 27(9), special issue, 5GPPP, pp. 1196-1205