Predicción de quiebras empresariales mediante inteligencia artificial

e-Archivo Repository

Show simple item record

dc.contributor.advisor Quintana Montero, David
dc.contributor.advisor López Gómez, Miguel Ángel
dc.contributor.author Montero Casarejos, Álvaro
dc.date.accessioned 2016-07-28T10:44:45Z
dc.date.available 2016-07-28T10:44:45Z
dc.date.issued 2016-07-28
dc.date.submitted 2016-02
dc.identifier.uri http://hdl.handle.net/10016/23450
dc.description.abstract El estudio de la predicción de quiebras empresariales ha incrementado su interés e importancia durante los últimos años, especialmente desde comienzo de la crisis de 2008, diferentes actores de la economía mundial, han requerido de sistemas capaces de identificar señales de insolvencia, con objeto de evitar los conocidos escenarios adversos asociados a las quiebras. A partir de los años 90, el campo de la Inteligencia Artificial se adentra en el estudio de la quiebra empresarial, consiguiendo una mejora de tasas predictivas, frente a las obtenida por parte de los modelos teóricos y estadísticos. La presente investigación se lleva a cabo con el propósito de establecer una génesis en el desarrollo de nuevos modelos de predicción, facilitando una comparación de las diferentes técnicas predictivas empleadas a lo largo de los últimos 50 años, basada tanto en investigaciones de terceros, como en el estudio empírico propio. Utilizando de manera independiente las máquinas de soporte vectorial y los árboles de decisión sobre la muestra estudiada, se alcanzan las mejores tasas de acierto. No obstante, el estudio empírico revela una mejora generalizada de las tasas de acierto al realizar una optimización previa de la muestra mediante el uso de técnicas de selección de atributos. Por otro lado, el trabajo justifica la tendencia actual de emplear modelos híbridos en la predicción de quiebras, al lograr la tasa de acierto más alta de la investigación (93.47%) mediante la combinación de cinco técnicas clasificatorias a través del clasificador combinatorio por votación.
dc.format.mimetype application/pdf
dc.language.iso spa
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Quiebra
dc.subject.other Inteligencia artificial
dc.title Predicción de quiebras empresariales mediante inteligencia artificial
dc.type bachelorThesis
dc.subject.eciencia Informática
dc.rights.accessRights openAccess
dc.description.degree Doble Grado en Ingeniería Informática y Administración de Empresas
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de Informática
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record