Publication:
Supported ultra-thin alumina membranes with graphene as efficient interference enhanced raman scattering platforms for sensing

dc.affiliation.dptoUC3M. Departamento de Físicaes
dc.contributor.authorAguilar Pujol, Montserrat
dc.contributor.authorRamírez Jiménez, Rafael
dc.contributor.authorXifre Pérez, Elisabet
dc.contributor.authorCortijo Campos, Sandra
dc.contributor.authorBartolomé, Javier
dc.contributor.authorF. Marsal, Lluis
dc.contributor.authorde Andrés, Alicia
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es
dc.contributor.funderMinisterio de Economía y Empresa (España)
dc.date.accessioned2022-08-05T07:45:08Z
dc.date.available2022-08-05T07:45:08Z
dc.date.issued2020-01-01
dc.description.abstractThe detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) single-layer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 (5%), for membranes with ~100 nm pore depth, ~18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (~400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements.en
dc.description.sponsorshipThe research leading to these results has received funding from Ministerio de Ciencia, Innovación y Universidades (RTI2018-096918-B-C41) and (RTI2018-094040-B-I00) and by the Agency for Management of University and Research Grants (AGAUR) 2017-SGR-1527. S.C. acknowledges the grant BES-2016-076440 from MINECO.en
dc.format.extent11
dc.identifier.bibliographicCitationAguilar-Pujol, M., Ramírez-Jiménez, R., Xifre-Perez, E., Cortijo-Campos, S., Bartolomé, J., Marsal, L. F., & de Andrés, A. (2020). Supported Ultra-Thin Alumina Membranes with Graphene as Efficient Interference Enhanced Raman Scattering Platforms for Sensing. In Nanomaterials (Vol. 10, Issue 5, p. 830). MDPI AG.en
dc.identifier.doihttps://doi.org/10.3390/nano10050830
dc.identifier.issn2079-4991
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue5
dc.identifier.publicationlastpage11
dc.identifier.publicationtitleNanomaterialsen
dc.identifier.publicationvolume10
dc.identifier.urihttps://hdl.handle.net/10016/35582
dc.identifier.uxxiAR/0000025726
dc.language.isoengm
dc.publisherMDPI AG.em
dc.relation.projectIDGobierno de España. RTI2018-096918-B-C41es
dc.relation.projectIDGobierno de España. RTI2018-094040-B-I00es
dc.relation.projectIDGobierno de España. BES-2016-076440es
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland.em
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subject.ecienciaFísicaes
dc.subject.otherInterferenceen
dc.subject.otherEnhanced Raman Scatteringen
dc.subject.otherAlumina Membraneen
dc.subject.otherGrapheneen
dc.subject.otherNanoparticlesen
dc.subject.otherOptical Simulationsen
dc.subject.otherAFMen
dc.subject.otherSEMen
dc.titleSupported ultra-thin alumina membranes with graphene as efficient interference enhanced raman scattering platforms for sensingen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ultrathin_NANOMATERIALS_2020.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format