Publication:
Simplified workflow simulation on clouds based on computation and communication noisiness

Loading...
Thumbnail Image
Identifiers
Publication date
2020-07-01
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Many researchers rely on simulations to analyze and validate their researched methods on Cloud infrastructures. However, determining relevant simulation parameters and correctly instantiating them to match the real Cloud performance is a difficult and costly operation, as minor configuration changes can easily generate an unreliable inaccurate simulation result. Using legacy values experimentally determined by other researchers can reduce the configuration costs, but is still inaccurate as the underlying public Clouds and the number of active tenants are highly different and dynamic in time. To overcome these deficiencies, we propose a novel model that simulates the dynamic Cloud performance by introducing noise in the computation and communication tasks, determined by a small set of runtime execution data. Although the estimating method is apparently costly, a comprehensive sensitivity analysis shows that the configuration parameters determined for a certain simulation setup can be used for other simulations too, thereby reducing the tuning cost by up to 82.46 percent, while declining the simulation accuracy by only 1.98 percent on average. Extensive evaluation also shows that our novel model outperforms other state-of-the-art dynamic Cloud simulation models, leading up to 22 percent lower makespan inaccuracy
Description
ASPIDE: Exascale programIng models for extreme data processing
Keywords
Cloud computing, Simulation, Workflow applications, Burstable instances, Performance instability and noisiness
Bibliographic citation
IEEE transactions on parallel and distributed systems, 31(7) July 2020, Pp. 1559-1574