Publication:
Selecting goals in oversubscription planning using relaxed plans

dc.affiliation.dptoUC3M. Departamento de Informáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Planificación y Aprendizajees
dc.contributor.authorGarcía Olaya, Ángel
dc.contributor.authorDe la Rosa Turbides, Tomás Eduardo
dc.contributor.authorBorrajo Millán, Daniel
dc.contributor.funderEuropean Commissionen
dc.contributor.funderAgencia Estatal de Investigación (España)es
dc.date.accessioned2022-04-01T11:21:05Z
dc.date.available2023-02-22T00:00:05Z
dc.date.issued2021-02-01
dc.description.abstractPlanning deals with the task of finding an ordered set of actions that achieves some goals from an initial state. In many real-world applications it is unfeasible to find a plan achieving all goals due to limitations in the available resources. A common case consists of having a bound on a given cost measure that is less than the optimal cost needed to achieve all goals. Oversubscription planning (OSP) is the field of Automated Planning dealing with such kinds of problems. Usually, OSP generates plans that achieve only a subset of the goals set. In this paper we present a new technique to a priori select goals in no-hard-goals satisficing OSP by searching in the space of subsets of goals. A key property of the proposed approach is that it is planner-independent once the goals have been selected; it creates a new non-OSP problem that can be solved using off-the-shelf planners. Extensive experimental results show that the proposed approach outperforms state-of-the-art OSP techniques in several domains of the International Planning Competition.en
dc.description.sponsorshipThis work has been partially funded by the European Union ECHORD++ project (FP7-ICT-601116), by FEDER/Ministerio de Ciencia, Innovación y Universidades/Agencia Estatal de Investigación TIN2017-88476-C2-2-R, RTC-2016-5407-4 and RTI2018-099522-B-C43 projects and the ESA GOTCHA project (4000117648/16/NL/GLC/fk). We would like to thank Michael Katz, Daniel Muller and Nir Lipovetzky for supporting us in using their planners and the reviewers for their helpful comments.en
dc.identifier.bibliographicCitationGarcía-Olaya, A., de la Rosa, T., Borrajo, D. (2021). Selecting goals in oversubscription planning using relaxed plans. Artificial Intelligence, 291, 103414en
dc.identifier.doihttps://doi.org/10.1016/j.artint.2020.103414
dc.identifier.issn0004-3702
dc.identifier.publicationfirstpage1
dc.identifier.publicationlastpage24
dc.identifier.publicationtitleARTIFICIAL INTELLIGENCEen
dc.identifier.publicationvolume291es
dc.identifier.urihttps://hdl.handle.net/10016/34506
dc.identifier.uxxiAR/0000028286
dc.language.isoengen
dc.publisherElsevieren
dc.rights© Elsevier, 2021en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.ecienciaInformáticaes
dc.subject.otherautomated planningen
dc.subject.otheroversubscription planningen
dc.subject.otherpartial satisfaction planningen
dc.subject.othersatisficing planningen
dc.titleSelecting goals in oversubscription planning using relaxed plansen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
selecting_AI_2021_ps.pdf
Size:
579.91 KB
Format:
Adobe Portable Document Format
Description: