Publication: Selecting goals in oversubscription planning using relaxed plans
dc.affiliation.dpto | UC3M. Departamento de Informática | es |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Planificación y Aprendizaje | es |
dc.contributor.author | García Olaya, Ángel | |
dc.contributor.author | De la Rosa Turbides, Tomás Eduardo | |
dc.contributor.author | Borrajo Millán, Daniel | |
dc.contributor.funder | European Commission | en |
dc.contributor.funder | Agencia Estatal de Investigación (España) | es |
dc.date.accessioned | 2022-04-01T11:21:05Z | |
dc.date.available | 2023-02-22T00:00:05Z | |
dc.date.issued | 2021-02-01 | |
dc.description.abstract | Planning deals with the task of finding an ordered set of actions that achieves some goals from an initial state. In many real-world applications it is unfeasible to find a plan achieving all goals due to limitations in the available resources. A common case consists of having a bound on a given cost measure that is less than the optimal cost needed to achieve all goals. Oversubscription planning (OSP) is the field of Automated Planning dealing with such kinds of problems. Usually, OSP generates plans that achieve only a subset of the goals set. In this paper we present a new technique to a priori select goals in no-hard-goals satisficing OSP by searching in the space of subsets of goals. A key property of the proposed approach is that it is planner-independent once the goals have been selected; it creates a new non-OSP problem that can be solved using off-the-shelf planners. Extensive experimental results show that the proposed approach outperforms state-of-the-art OSP techniques in several domains of the International Planning Competition. | en |
dc.description.sponsorship | This work has been partially funded by the European Union ECHORD++ project (FP7-ICT-601116), by FEDER/Ministerio de Ciencia, Innovación y Universidades/Agencia Estatal de Investigación TIN2017-88476-C2-2-R, RTC-2016-5407-4 and RTI2018-099522-B-C43 projects and the ESA GOTCHA project (4000117648/16/NL/GLC/fk). We would like to thank Michael Katz, Daniel Muller and Nir Lipovetzky for supporting us in using their planners and the reviewers for their helpful comments. | en |
dc.identifier.bibliographicCitation | García-Olaya, A., de la Rosa, T., Borrajo, D. (2021). Selecting goals in oversubscription planning using relaxed plans. Artificial Intelligence, 291, 103414 | en |
dc.identifier.doi | https://doi.org/10.1016/j.artint.2020.103414 | |
dc.identifier.issn | 0004-3702 | |
dc.identifier.publicationfirstpage | 1 | |
dc.identifier.publicationlastpage | 24 | |
dc.identifier.publicationtitle | ARTIFICIAL INTELLIGENCE | en |
dc.identifier.publicationvolume | 291 | es |
dc.identifier.uri | https://hdl.handle.net/10016/34506 | |
dc.identifier.uxxi | AR/0000028286 | |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.rights | © Elsevier, 2021 | en |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.eciencia | Informática | es |
dc.subject.other | automated planning | en |
dc.subject.other | oversubscription planning | en |
dc.subject.other | partial satisfaction planning | en |
dc.subject.other | satisficing planning | en |
dc.title | Selecting goals in oversubscription planning using relaxed plans | en |
dc.type | research article | * |
dc.type.hasVersion | AM | * |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- selecting_AI_2021_ps.pdf
- Size:
- 579.91 KB
- Format:
- Adobe Portable Document Format
- Description: