
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

García-Olaya, A., de la Rosa, T., Borrajo, D. (2021).
Selecting goals in oversubscription planning using
relaxed plans. Artificial Intelligence, 291, 103414

DOI: 10.1016/j.artint.2020.103414

© Elsevier, 2021

https://doi.org/10.1016/j.artint.2020.103414
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Selecting goals in Oversubscription Planning using Relaxed Plans

Angel Garcı́a-Olayaa,∗, Tomás de la Rosaa, Daniel Borrajoa

aComputer Science Department, Universidad Carlos III de Madrid. Leganés (Madrid) Spain

Abstract

Planning deals with the task of finding an ordered set of actions that achieves some goals from
an initial state. In many real-world applications it is unfeasible to find a plan achieving all goals
due to limitations in the available resources. A common case consists of having a bound on a
given cost measure that is less than the optimal cost needed to achieve all goals. Oversubscription
planning (OSP) is the field of Automated Planning dealing with such kinds of problems. Usually,
OSP generates plans that achieve only a subset of the goals set. In this paper we present a new
technique to a priori select goals in no-hard-goals satisficing OSP by searching in the space of
subsets of goals. A key property of the proposed approach is that it is planner-independent once
the goals have been selected; it creates a new non-OSP problem that can be solved using off-
the-shelf planners. Extensive experimental results show that the proposed approach outperforms
state-of-the-art OSP techniques in several domains of the International Planning Competition.

Keywords: Automated planning, Oversubscription planning, Satisficing planning, Partial
satisfaction planning

1. Introduction

The objective of classical Automated Planning is to find a sequence of actions transforming
an initial state into a state where a set of goals is true. A valid plan is the sequence of actions
reaching a state where all goals have been achieved. If any of the goals remains unachieved, the
plan will not be valid. But in many real-world applications finding such a plan is unfeasible as
there are more goals than those which can be achieved with the available resources. Thus, finding
a plan that achieves all goals is not the objective of the problem solver. Instead, it should find a
plan that achieves the maximum number of them, or more commonly, that maximizes some kind
of utility, computed as a function of the reached goals.

The problem of planning with insufficient resources is tackled by Oversubscription planning
(OSP) [1], which was initially motivated by some real tasks at NASA. In its original formulation
a limited consumable resource, the battery of a rover, makes reaching all goals impossible; there
are more goals than those that can be achieved given its stored energy. Most papers in the
literature generalize the problem by representing the insufficient resource as a cost-bound of the
plan [1, 2, 3, 4, 5]. Only plans with cost equal or lower than the bound will be valid, with the

∗Corresponding author
Email addresses: agolaya@inf.uc3m.es (Angel Garcı́a-Olaya), trosa@inf.uc3m.es (Tomás de la Rosa),

dborrajo@ia.uc3m.es (Daniel Borrajo)

assumption that no plan will exist reaching all goals with such cost bound. Examples of such
limited and insufficient resources appear in space exploration [1, 6], transportation [7] and in
many other applications.

OSP appears in many real applications but surprisingly it has not drawn too much attention
from the planning community after the seminal work of Smith [1]. Only recently some works
have addressed this task, dealing with its optimal version [2, 3, 4, 5]. But the suboptimal OSP
task remains mostly unexplored even if solving OSP tasks optimally is not feasible in many
real cases. Currently, non-optimally solving OSP problems requires either creating entirely new
planning systems or heavily modifying the code of the existing optimal ones.

This paper introduces a sub-optimal algorithm to solve OSP problems, with the key advan-
tage of being planner independent. In a first step, relaxed plans [8] are used to compute distances
among goals. Distances are an estimation of the cost needed to achieve a goal from a state
where another goal has been achieved. A subsequent search in the space of goals’ subsets uses
those distances to find subsets of goals of increasing utility with estimated costs under the cost
bound. Then, a suboptimal planner takes as input each new selected goals’ set and tries to find
a plan. The approach is planner independent once goals are selected: any planner supporting
Planning Domain Definition Language (PDDL), version 2.1 [9] numeric preconditions or any
cost-bounded planner can be used to find the plan. This feature makes our approach particu-
larly attractive to solve oversubscription planning tasks off-the-shelf. It allows users to solve
suboptimal OSP tasks without creating a new planning system or digging into planning code.

This paper extends our previous work [10] with the addition of an iterative improvement be-
havior; if a plan is found for the selected goals, it keeps searching for candidate goal sets that may
improve the already achieved utility until the allotted time is exhausted. Also, a formal analysis
of the algorithm has been included, as well as a more comprehensive evaluation, comparing it in
more domains to alternative approaches found in the literature.

OSP is formally defined in the following section. Related work is described in Section 3.
Section 4 presents the algorithm we use to solve the problem. Section 6 shows the experimental
results and the comparison of our technique with other approaches. These approaches are pre-
viously presented in Section 5, which contains also a description of the domains and problems
used for evaluation. Finally, Section 7 draws some conclusions and hints at future work.

2. Background

In this section, we formally define the OSP problem and show a way to encode it using the
standard language for the description of planning tasks, PDDL [11, 12].

Definition 1 (strips planning task with actions costs). A strips planning task with actions costs
is a tuple P = {F, A, I,G, c}, where

• F is a finite set of fluents,

• A is a finite set of instantiated actions, mapping one state into another one,

• I ⊆ F is the initial state,

• G ⊆ F is the set of goals, and

• c : A 7→ R+
0 is a cost function.

2

An action a ∈ A is a tuple {pre(a), add(a), del(a)}, such that pre(a), add(a), del(a) ⊆ F.
An action sequence π = (a1, a2, ...an) is applicable in P if there exists a sequence of states
(s0, s1, ...sn), such as s0 = I, and ∀i = 1...n, pre(ai) ⊆ si−1 and si = (si−1 \ del(ai)) ∪ add(ai). An
action sequence π is a plan for P if it is applicable in P and G ⊆ sn.

Definition 2 (Cost of a plan). The cost of a plan π, solution to the planning task P, can be defined
as: C(π) =

∑
ai∈π c(ai).

Definition 3 (strips planning task with actions costs and utilities). A strips planning task with
actions costs and utilities is a tuple Pu = {F, A, I,G, c, u}, where {F, A, I,G, c} is a strips planning
task with actions costs as defined above and u : 2F 7→ R+

0 is a utility function.

The utility function is usually defined over individual facts f ∈ F (u : F 7→ R+
0). Facts f < G

for which u(f) > 0 are known as soft-goals, in contrast with facts in G, which are called hard-
goals and most commonly are assigned zero utility. Facts that are not soft-goals or hard-goals
are also assigned a zero utility. The definitions of plan and cost of a plan remain the same as in
Definitions 1 and 2.

Definition 4 (Utility of a plan). The utility of a plan π that solves a strips planning task with
actions costs and utilities is U(π) =

∑
fi∈sn

u(fi), where sn is the state resulting of applying π to I.

We consider additive utilities, as most work in the field does (see [13] for other types of
utilities). An alternative representation of utilities consists of defining penalties to be minimized.
A penalty is a function p : F 7→ R+

0 and the penalty of a plan is penalty(π) =
∑

fi<sn
p(fi). Again,

facts that are not soft-goals are assigned a zero penalty, while facts in the hard-goals set have an
implicit penalty of∞.

Definition 5 (Oversubscription planning task). An oversubscription planning (OSP) task is a
tuple POS P = {F, A, I,G, c, u, cb}, where {F, A, I,G, c, u} is a strips planning task with actions
costs and utilities as defined above and cb ∈ R+ is a cost-bound.

A sequence of actions π = (a1, a2, ...an), is a plan for POS P if it is a plan for {F, A, I,G, c, u}
and C(π) ≤ cb. Most approaches in the literature consider G = ∅ for OSP tasks. This means there
are no hard-goals; only soft-goals. Therefore, any plan under the cost-bound, even the empty
one, is a valid plan. In such setting, the objective in OSP is to find a plan that maximizes the
utility. In this paper we will assume there are no hard-goals, and we will use indistinctly the
terms goal and soft-goal. Hence, we will define our task as POS P = {F, A, I, c, u, cb}.

PDDL3 [12] allows us to define OSP tasks using preferences over the goal states. Figure 1
shows an example of the PDDL3 parametrized definition of the navigate action in the rovers
OSP domain. The action has three parameters, the rover, the origin and the destination.
The total-cost function accounts for the current cost of the plan, while traverse-cost rep-
resents the cost of the action. We have also defined cost-bound to constraint the maximum
cost of any solution. The preconditions check that the rover is available, it is at the origin, it can
move from the origin to the destination, and the cost after applying the action will not exceed the
cost-bound1. Once the action is applied, the rover is no longer at the origin, it is at the destination
and the total cost is increased conveniently.

1Notice that to formulate an OSP task using PDDL3, numeric preconditions must be added to all actions increasing
the total-cost. An alternative encoding that avoids such numeric preconditions, but which is not standard PDDL yet,
can be found at [4].

3

(:action navigate
:parameters (?r - rover ?o - waypoint ?d - waypoint)
:precondition (and (available ?r)

(at ?r ?o)
(can_traverse ?r ?o ?d)
(<= (+ (total-cost) (traverse-cost ?r ?o ?d))

(cost-bound)))
:effect (and (not (at ?r ?o))

(at ?r ?d)
(increase (total-cost) (traverse-cost ?r ?o ?d))))

Figure 1: Example of a cost-bounded action in the Rovers domain.

Figure 2 shows an example of a problem defined for the rovers domain. It has three loca-
tions, one rover, equipped with a camera and placed at the second location, and a cost-bound
of 20. The goal is to take an image of a couple of objectives which are only visible from
the first and third locations, respectively. Instead of defining utilities, PDDL3 uses penalties.
The (preference 〈preference tag〉 〈literal〉) construct is used to define which liter-
als are assigned a positive penalty. The specific penalties are defined in the metric by using
(is-violated 〈preference tag〉). In this example, if the robot cannot take the image of
the first objective, it would pay a penalty of three, while for the second objective the penalty is
two. The aim is to find a plan minimizing the total penalty. The example problem does not have
hard-goals as it is usual in OSP.

(define (problem roverExample)
(:domain rover)
(:objects rover1 - rover

waypoint1 waypoint2 waypoint3 - waypoint
camera1 - camera
objective1 objective2 - objective)

(:init (= (cost-bound) 20)
(= (total-cost) 0)
(at rover1 waypoint2)
(available rover1)
(can_traverse rover1 waypoint1 waypoint2)
(can_traverse rover1 waypoint2 waypoint1)
(can_traverse rover1 waypoint2 waypoint3)
(can_traverse rover1 waypoint3 waypoint2)
(on_board camera1 rover1)
(visible_from objective1 waypoint1)
(visible_from objective2 waypoint3)
(= (traverse-cost rover1 waypoint1 waypoint2) 7)
(= (traverse-cost rover1 waypoint2 waypoint1) 8)
(= (traverse-cost rover1 waypoint2 waypoint3) 9)
(= (traverse-cost rover1 waypoint3 waypoint2) 7))

(:goal (and (preference p1 (taken_image objective1))
(preference p2 (taken_image objective2))))

(:metric minimize (+ (* (is-violated p1) 3) (* (is-violated p2) 2))))

Figure 2: Example of an OSP problem in the Rovers domain.

3. Related work

A recent work established the different nature of OSP with respect to its two closest related
planning tasks [2]: cost-bounded and net-benefit planning. Planning with limited consumable
resources, also known as Resource Constrained Planning or cost-bounded planning, has recently

4

drawn some attention of the planning community [14, 15, 16]. It also establishes a cost-bound
on the plan, but unlike OSP it assumes the bound is big enough to achieve all the goals. Also, it
does not include any utility function; it only considers hard-goals and no soft-goals.
net-benefit planning is also quite close to OSP. In fact, both tasks are subtasks of Partial

Satisfaction Planning (PSP) [17, 18], and have been often confused in the literature [2]. OSP and
net-benefit define utilities over some facts, but there is no cost-bound in net-benefit. Also, the
objective does not consist of maximizing U(π), but some combination of utility and cost, usually
U(π) − C(π). Thus, it establishes a trade-off between the utility of achieving a goal and the cost
of doing it [19]. Finding a plan with a net-benefit bigger than or equal to a value k is PSPACE-
complete [18]. Optimal OSP is also PSPACE-complete [3]. Nevertheless, a study shows that, in
the most common case of additive utilities, optimal net-benefit lies between polynomial and NP-
complete, depending on the fragment considered. Fragments of both problems are characterized
by their causal graph structure and variable domain sizes. The same fragments for OSP are
always NP-complete [3]. net-benefit was included in the International Planning Competition
(IPC)2 in 2006 (IPC-2006) under the preferences track and in IPC-2008 under the net-benefit
track. In the preferences track, problems can include not only soft-goals but also preferences on
preconditions of actions. Benton [19] shows a way to transform preferences problems into net-
benefit ones. Probably due to the IPC, most work on PSP has been on net-benefit [13, 19, 18,
20, 21, 22, 23]. In contrast, OSP has been less explored [1, 2, 3, 4, 5], even though the existence
of a limited resource (time, fuel, battery, storage space, money, . . .) is present in a large number
of real domains. Given that many techniques used for the net-benefit task can also be applied to
OSP, this section will summarize related work addressing any of the two techniques.

The optimal solution for a PSP problem can be computed by finding optimal plans for each
of the 2n combinations of the n goals of the problem, and then selecting the plan with maximum
utility or net-benefit. Of course, this is intractable except for very simple problems. In practice,
three different approaches can be found in the literature: a priori selection of goals, anytime
search taking into account all goals, and compilation into a different problem.

Goals can be selected a priori to find the potentially best subset to plan for. In a first step,
goals are selected using some criteria. Then, a planning step is performed taking into account
only the selected goals. The seminal OSP work by Smith selects goals by creating an orienteering
problem (OP), a variation of the traveling salesperson problem [1]. The OP is constructed in
a process that involves creating an abstract state space by selecting a subset of the problem
propositions and using relaxed plans to calculate the costs of achieving the goals in that abstract
space. The resulting OP is solved using beam search. The solution is an ordered set of promising
goals which are supplied one at a time to a partial-order planner.

Relaxed plans have been also used to select goals in net-benefit [23]. For each goal, the
approach computes the highest net-benefit set containing it. The net-benefit of each individual
goal is estimated using the cost of the relaxed plan solving a simplified problem where all the
remaining goals have been removed. The same procedure is used to compute the net-benefit of
all two-goals sets including that goal and every other one, keeping the set with the highest net-
benefit, which is used to construct three-goals sets. This process is repeated until it finds a set
that does not improve its net-benefit when adding a new goal. After performing this process for
every goal, the set with highest net-benefit is selected for planning. We also use relaxed plans to
select goals. In Section 4.3 we compare our approach against these two approaches, including
an analysis of their complexity.

2http://www.icaps-conference.org/index.php/Main/Competitions
5

An alternative to goal selection is to take into account all goals when planning. For example,
the planner can be instructed to incrementally find higher utility plans, or use previously found
plans as a bound to prune nodes during search. In general, those approaches scale worse than the
goal-selection ones as they need to reason taking into account the whole set of soft-goals instead
of a subset of them, which results in bigger search spaces. In OSP, admissible heuristics based on
landmarks for goal reachability and abstractions [24] have been used to guide the search using
a best-first branch-and-bound algorithm [2]. The best plan found so far is stored and branches
that do not increase the utility are pruned. More informative landmarks based on properties of
OSP optimal plans have been proposed [5], although its performance is not far from a blind
search approach. optic [25] is a heuristic planner that combines a classical relaxed plan-graph
heuristic for standard propositions, hFF [8], and mixed integer programming for the soft-goals.
It uses automata to reason about accomplishment of each soft-goal (unsatisfied, satisfied, or
impossible to be satisfied from the current state). HPlan-P [26] allows planning for temporally
extended preferences, which are internally compiled to soft goals using automata. It also includes
a variety of heuristic functions in combination with an incremental best-first planning algorithm
which uses iteratively each of the heuristics to find a better plan. In domains where all actions
have the same cost, one of the heuristics they propose, the Preference distance function, has some
similarities with our approach. But they use the heuristic to guide the search while we use it to
select goals. Also, they compute the sum of distances for all goals, while we compute a value for
each goal.

A hybrid approach is presented in SapaPS [19]. It combines an anytime A∗ algorithm with
a heuristic that for each node estimates the set of goals with highest net-benefit and the plan
that achieves them with the lowest cost. The search is done in the plans space. Do et al. [13]
extend the net-benefit problem to the case of non-additive heuristics and introduce a framework
to classify goal utilities and cost dependencies to account for different situations; e.g. when the
utility of a goal depends on the achievement of another goal.

A common way to solve PSP problems is to transform them either into (simpler) planning
problems or into another formulation. A PSP problem can be modeled as a Markov Decision
Process [1, 18], obtaining a policy from which a plan finding the optimal solution can be ex-
tracted. However, this conversion does not scale well and it has not been reported to be used in
practice. Using integer programming to find optimal plans for a given parallel plan length is an-
other possible transformation [18]. Both Gamer [21] and mips-xxl [20] transform the net-benefit
task into a strips task with action costs, by adding some numeric literals whose values change if
a soft-goal is not achieved.

The most successful transformation for the net-benefit task creates also a strips with action
costs task, with more actions, more fluents and more goals, but no soft-goals [27]. Given that
the compiled version only has hard goals, any classical planner can be used to solve this new
problem. For every soft-goal a new goal and two new actions are added to the domain. Both
actions achieve the new goal. One action has the soft-goal as precondition and the action cost is
zero. The second action does not have such precondition, and it has a cost equal to the soft-goal’s
penalty. Thus, the planner can decide whether to reach the new goal using the first or the second
action, paying the penalty in the second case. This compilation, with some improvements and
optimizations, in combination with lama [28], the winner of the satisficing track of the IPC-2008,
outperforms any participant of the net-benefit or preferences tracks of the IPCs 2006 and 2008.
This compilation can be easily adapted to reduce OSP to classical planning with the real-valued
state variables supported by standard PDDL2.1 [2]. Figure 3 shows a simplified example of

6

the two dummy actions that need to be added to the rovers domain to handle the taken-image
soft-goals defined in the problem of Figure 2.

A recent work presents two compilations transforming the OSP problem into a multiple cost
function (MCF) planning task [4], where utilities form the primary cost function and the cost-
bound the secondary one. Their first reformulation, soft-goals, is a straightforward adaptation of
Keyder and Geffner’s one [27]. The second transformation, state-delta, is based on the net utility
of each operator in the domain. Using these compilations, they present two merge and shrink [29]
admissible heuristics to decide which nodes to prune in optimal planning. Another work shows
how these compilations allow the problem to be solved using A* search with bound-sensitive
heuristics [30].

(:action soft-goal-collect
:parameters (?o - objective ?s - softgoal)
:precondition (and (at-softgoal ?o ?s)

(taken-image ?o))
:effect (achieved-softgoal ?s))

(:action soft-goal-forgo
:parameters (?o - objective ?s - softgoal)
:precondition (and (at-softgoal ?o ?s)

(not (taken-image ?o)))
:effect (and (achieved-softgoal ?s)

(increase (total-penalty) (penalty ?s))))

Figure 3: Example of two inserted actions in a compiled OSP domain following Keyder and Geffner’s transformation.

4. Algorithm

In this section, we describe Relaxed Plan Linear Distances (rpld), the proposed algorithm,
which performs an a priori selection of goals (Algorithm 1). First, distances between goals are
computed based on a relaxed plan. These distances are estimates of costs of achieving each goal
from the initial state, and costs of reaching a goal once any other goal has been achieved. Those
distances are used to search for sets of goals that maximize the expected utility while keeping
the estimated cost of reaching them under the cost-bound. Once an ideally non-oversubscribed
set of goals is found, an external non-OSP planner is invoked to find a plan for it. Search con-
tinues returning sets of increasingly better utility and stops when the timeout is reached or no set
improving the utility is found.

The inputs of the algorithm are an OSP task and the time the external planner will be given
to find a plan for the selected goals’ subset. Lines (1-3) initialize the maximum utility found
so far (umax) to the utility of the empty plan, and the selected goals set (G′) and the set of non-
achievable goals sets (D) to empty. D stores discarded sets of goals for which no plan has been
found and is used to prune branches when selecting goals. Next, we compute the distances
between goals (line 4) and invoke an anytime procedure select-goals-and-plan. This procedure
performs a Depth First Branch and Bound (DFBnB) search over the sets of goals G′ that seem
to be achievable. Then, it tries to find plans for selected nodes. If this procedure exhausts the
search space and there is still time, a second DFBnB process, enforced-select-goals-and-plan,
extends the search over the sets that are considered non-achievable according to the distances. If
this second procedure finds a plan, it is returned. Otherwise, the plan found by the first procedure
is returned. DFBnB is used as a greedy approach for goals’ selection. It tends to find sets with

7

Algorithm 1 Relaxed Plan Linear Distances (rpld)
Input: POS P = {F, A, I, c, u, cb}: OSP task, t: time bound for the external planner
Output: Plan: π

1: umax ← U(∅) . Initialized to the utility of the empty plan
2: G′ ← ∅ . Selected goals set
3: D← ∅ . Used to prune the search while selecting goals
4: ∆← calculate-distances(POS P)
5: π← select-goals-and-plan(POS P,G′,∆,D, umax, t)
6: G′ ← ∅ . Starting selection again
7: π′ ← enforced-select-goals-and-plan(POS P,G′,∆,D, umax, t)
8: if π′ , ∅ then
9: return π′

10: else
11: return π

a smaller number of goals than a more exhaustive search would do. Given that relaxed plans
tend to underestimate the cost of reaching a goal in general, a smaller set reduces the chances
of oversubscription. We confirmed this hypothesis with previous experiments, where less greedy
algorithms produced often oversubscribed sets.

In the next subsections we will detail the distances calculation (calculate-distances, Sec-
tion 4.1), and the goal selection and planning procedures (select-goals-and-plan and enforced-
select-goals-and-plan, Section 4.2). We also analyze the formal properties of our algorithm and
compare them to related work (Section 4.3).

4.1. Distances between goals

In the first step, a matrix ∆ of distances among goals is computed. It is an n × (n + 1) matrix,
where n = |G| and G = { f ∈ F | u(f) > 0} are the soft-goals. ∆(x, 0), 1 ≤ x ≤ n, also denoted
∆Ix, contains the cost estimate for achieving goal gx from the initial state. ∆(x, y), 1 ≤ x, y ≤ n,
also denoted ∆xy, contains the cost estimate to achieve goal gy once goal gx has been reached.

Estimates are calculated using relaxed planning tasks. Any STRIPS-based planning task can
be relaxed by changing the set of actions A by A′. Each a′i = {pre(ai), add(ai), ∅}, a′i ∈ A′, ai ∈ A.
In other words, the delete effects of actions are removed. These new tasks are simpler to solve
than the original ones and are commonly used to create heuristics for the original task. One such
heuristic is hFF , whose value corresponds to the cost of a plan for the relaxed task [8]. We use
the value of hFF to calculate distances in the following way:

Definition 6 (Distance to a goal). Let POS P = {F, A, I, c, u, cb} be an OSP planning task, gx ∈

F, u(gx) > 0, a goal and Pr(gx) = {F, A′, I, {gx}, c} be a relaxed strips planning task with actions
costs with a single goal. Let πr(gx) be a relaxed plan that solves Pr(gx) using hFF [8]. We define
the distance from I to goal gx, ∆Ix, as C(πr(gx)).

If a relaxed plan is not found while calculating a given distance, its value is set to infinity. If
C(πr(gx)) = 0, which means the goal is already achieved in the initial state, ∆Ix is set to infinity.
The reason is that we assume the goal has to be undone to be reached again in the future and the
zero distance is a misleading value.

πr(gx) is a solution for the relaxed one-goal task, but it will usually not be a solution for the
original one-goal task. Actually, very often it is not even applicable. However, ∆Ix helps deciding

8

whether or not to include this goal into the set of goals to plan for. Its value, combined with the
utility of each goal, could be enough to decide which goals to select if the cost of achieving a
goal were independent of whether another goal had been reached before. But, in most cases,
achieving a goal will change the cost of reaching other goals [1]. To estimate such dependency
among goals we define the distance between two goals as follows:3

Definition 7 (Distance between two goals). Let POS P = {F, A, I, c, u, cb} be an OSP task, πr(gx) =

(a′1, a
′
2, ...a

′
n) be the relaxed plan used to calculate ∆Ix and π(gx) be a plan, where each a′ in πr(gx)

has been substituted by its corresponding a. Let sx be the state resulting of applying π(gx) to I,
ignoring preconditions. A new task Pr(gx, gy) =

{
F, A′, sx, {gy}, c

}
can be created. The distance

between goals gx and gy, named ∆xy, is equal to the cost of a relaxed plan πr(gx, gy) that solves
Pr(gx, gy); ∆xy = C(πr(gx, gy)).

In general, ∆xy , ∆yx as the cost of achieving gy from gx is usually different than the cost
of achieving gx from gy. Depending on the domain the estimations can be far away from the
real values. However, other alternatives to obtain better estimations of the cost, like solving
equivalent one-goal non-relaxed tasks, are not useful in practice; computing them takes too long
in general as our previous work showed [10].

This method of computing the distance between two goals does not fully consider all the
interactions between them. There could be other alternatives to compute the distances as using
other heuristic or complete methods. We performed proof-of-concept experiments using other
alternative heuristic definitions for distances, like defining ∆xy as the cost of a relaxed plan in-
cluding both gx and gy or applying A′ instead of A to generate sx. Those approaches select sets
of goals that are still oversubscribed more often than when using our distances approach. Hence,
we decided to use the defined distance metric.

Definition 8 (Distance to an ordered list of goals). Let POS P = {F, A, I, c, u, cb} be an OSP
planning task, and G′ = (g1, g2, ...gk), gi ∈ F, 1 ≤ i ≤ k, u(gi) > 0, be an ordered list of goals. We
define the distance from I to G′ as the estimated cost of achieving those goals from I in order. It
is computed as ∆(G′) = ∆I1 + ∆1 2 + ...+∆(k−1) k.

The computation of ∆ is summarized in Algorithm 2. Lines (1-3) create new sets of relaxed
actions, no-precondition actions, and soft-goals. For each goal in this set we create a single-goal
non-cost-bounded relaxed problem and solve it, storing the cost of the found plan as ∆Ix (lines
5-7). Then, the actions in the relaxed plan are replaced by their no-precondition equivalent ones
and the plan is applied to reach a new state (lines 8-9). Starting from this new initial state, single-
goal non-cost-bounded relaxed problems are created and solved for each one of the remaining
goals. The costs of those plans are stored as ∆xy. Finally, the algorithm returns the distances
matrix ∆.

4.2. Goals selection

The distances matrix is used to select goals as shown in Algorithms 3, 4 and 5. select-goals-
and-plan (Algorithm 3) implements a DFBnB search that adds goals based on their utility and
estimated cost. In line 2, the procedure generate-successors creates a set of candidate goals S

3For simplicity, we are going to assume that a relaxed plan is a linear sequence of actions.

9

Algorithm 2 calculate-distances
Input: OSP task: POS P = {F, A, I, c, u, cb}

Output: Distances matrix: ∆

1: A′ ← {{pre(a), add(a), ∅} | a ∈ A} . Create new sets of actions
2: A′′ ← {{∅, add(a), del(a)} | a ∈ A}
3: G← { f ∈ F | u(f) > 0}
4: for all gx ∈ G do
5: Pr(gx)← {F, A′, I, {gx}, c} . Create one-goal relaxed tasks
6: πr(gx)← create-relaxed-plan(Pr(gx)) . Solve relaxed tasks
7: ∆(x, 0)← C(πr(gx)) . Assign the cost of the relaxed plan to ∆Ix

8: π(gx)← replace(πr(gx), A′, A′′) . Replace each a ∈ A′ by its equivalent a ∈ A′′

9: sx ← apply(π(gx), I) . Apply the relaxed plan
10: for all gy ∈ G do
11: Pr(gx, gy)←

{
F, A′, sx, {gy}, c

}
12: πr(gx, gy)← create-relaxed-plan(Pr(gx, gy))
13: ∆(x, y)← C(πr(gx, gy)) . Assign the cost of the relaxed plan to ∆xy

14: return ∆

to extend the input set G′ = {g1, g2, . . . gk}. We first define S ′ to be the set of goals that can be
added to G′ maintaining the total cost under the cost bound.

S ′ =
{
gi ∈ (G \G′) | (∆(G′) + ∆ki) ≤ cb

}
(1)

Then S can be computed as:

S =
{
gi ∈ S ′ | @d ∈ D, d ⊆ (G′ ∪ {gi})

}
(2)

In other words, S contains all the goals that can be added to G′, maintaining the total cost
under the cost-bound and that do no result in supersets of already non-achieved sets (sets for
which the procedure invoke-planner did not find a plan in previous iterations). If there are no
successors, G′ is a terminal node and cannot be further expanded. In that case, if its utility is
greater than the maximum utility found so far, we try to find a plan for it by calling invoke-
planner (lines 3-6), and return its result (the plan found or the empty plan). In any other case,
this branch of the search is a dead-end and the algorithm returns the empty plan. In non-terminal
nodes, it selects the successor with lowest cost from those with highest utility (lines 8-9), and
recursively invokes select-goals-and-plan (line 10). If the recursive call finds a plan improving
the utility value, it is stored (lines 11-12) and the algorithm expands the next sibling. If there
are no more successors, the procedure returns π (lines 17-18). If no plan were found for any of
its successors and u(G′) > umax, G′ would become a terminal node and would be planned for.
However, we do not wait to expand all the successors to plan for G′. If no plan is found for the
first successor, the algorithm tries to find a plan for G′. If no plan is found for it, the algorithm
returns the empty plan (lines 13-16). If a plan is found, it keeps expanding successors. This
procedure is equivalent to removing the last goal from the selected set until a plan is found. It
has two practical advantages. First, it allows for an early pruning; a regular DFBnB algorithm
would try first all the terminal nodes. Given that the distances tend to underestimate the real
cost, the OSP tasks in those terminal nodes are often still oversubscribed. Checking a set G′ as
soon as any of its supersets seems to be oversubscribed allows the algorithm to test if this branch
deserves to be explored. Second, in general, the smaller the set is, the easier it is that it is not

10

oversubscribed. Thus, also the easier it is to find a plan for it. If no plan is found for a terminal
node n, instead of keep expanding other terminal nodes, the algorithm tries to find a plan for
nodes with u > umax in the path to n, thus having a first plan even if of small utility.

Algorithm 3 select-goals-and-plan
Input: POS P = {F, A, I, c, u, cb} ,G′,∆,D, umax, t
Output: π: plan found or ∅ if no plan rooted at G′ improves umax

1: π← ∅
2: S ← generate-successors(G′,∆,D, cb, u) . Successors of the current set
3: if S = ∅ then . Terminal node, we check its utility
4: if u(G′) > umax then
5: π← invoke-planner({F, A, I,G′, c, cb} , t, umax,D)
6: return π
7: repeat . If not terminal, we expand it
8: gx ← Select(G′, S ,∆, u) . The child with highest utility
9: S ← S \ {gx} . Remove it from the set of children

10: p← select-goals-and-plan(POS P,G′ ∪ {gx},∆,D, umax, t) . Expand it
11: if p , ∅ then
12: π← p . Updating the best plan found so far
13: else if u(G′) > umax then
14: π← invoke-planner({F, A, I,G′, c, cb} , t, umax,D)
15: if π = ∅ then
16: return π . If no plan for G′, it is not expanded anymore
17: until S = ∅

18: return π

invoke-planner calls an external planner to find a plan for a new cost-bounded planning task
Pcb = {F, A, I,G′, c, cb}. G′ can still be oversubscribed, so we run the planner with a time bound.
There is a trade-off between devoting more time to a still potentially oversubscribed set of goals
or backtracking. Backtracking will increase the chances of finding a solution, but this solution
will have less utility. Different strategies to set this time are discussed in Section 5.4. If a plan is
found, the procedure updates the maximum utility, and returns the solution. Otherwise, it adds
this set to the non-achievable ones to prune its supersets in the search, and returns an empty plan.
In most cases we cannot prove there is no plan for the set as very often t does not allow to exhaust
the search space.

Algorithm 4 invoke-planner
Input: Cost-bounded problem P = {F, A, I,G′, c, cb} , t, umax,D
Output: π: plan found or ∅ if no plan is found

1: π← plan({F, A, I,G′, c, cb} , t)
2: if π , ∅ then
3: umax ← U(π) . Updating the best utility
4: else
5: D← D ∪ {G′} . Supersets of G’ will be pruned
6: return π

When select-goals-and-plan has tried all the combinations of goals under the cost-bound,
the bound is relaxed and enforced-select-goals-and-plan is invoked. It is also a DFBnB search,

11

but instead of trying to find a plan for the terminal nodes only, it will try to find a plan for every
expanded node with utility higher than the maximum one. The set of successors will be:

S =
{
gi ∈ (G \G′) | @d ∈ D, d ⊆ (G′ ∪ {gi})

}
(3)

In other words, it is composed of all the non-pruned sets of goals resulting from adding a
goal to the current set, despite their estimated cost. It first tries to find a plan for G′ (lines 2-5).
If a plan is found, it is expanded (lines 6-12). Finally, the best plan found either for G′ or one of
its successors is returned.

Algorithm 5 enforced-select-goals-and-plan
Input: POS P = {F, A, I, c, u, cb} ,G′,∆,D, umax, t
Output: π: plan found or ∅ if no plan rooted at G′ improves umax

1: π← ∅
2: if u(G′) > umax then
3: π← invoke-planner({F, A, I,G′, c, cb} , t, umax,D)
4: if π = ∅ then
5: return π . This branch will not be expanded
6: S ← generate-successors(G′,D, u) . Successors of the current set
7: while S , ∅ do . If not terminal, we expand it
8: gx ← Select(G′, S ,∆, u) . The child with highest utility
9: S ← S \ {gx} . Remove it from the set of children

10: p← enforced-select-goals-and-plan(POS P,G′ ∪ {gx},∆,D, umax, t)
11: if p , ∅ then
12: π← p . Updating best plan found
13: return π

Figures 4a to 4e show the algorithm execution for a four-goals problem, none of them holding
in the initial state (initially umax = 0). All have unitary utility u(gi) = 1,∀gi ∈ G, so in this case
selection will be performed only attending to distance. The cost-bound is 20, and the distances
matrix is shown on the right of Figure 4a. select-goals-and-plan will add goals to G′ until it
reaches the terminal node G′ = {g1, g2, g3, g4} (Figure 4a). Let us assume that no plan is found
for them in the allotted time. Then, {g1, g2, g3, g4} is added to D to prune its supersets (none in
this example). We prune all the supersets of these goals as the order in G’ is relevant during
the selection process, but not for planning, i.e. we assume that if invoke-planner did not find
a plan for {g1, g2, g3, g4}, no plan will be found for its supersets, if there were any.4 As no
plan is returned and u({g1, g2, g3}) > umax, the planner is invoked with {g1, g2, g3}. If no plan is
found, the algorithm backtracks again: {g1, g2, g3} is marked as unachievable, and it tries to find
a plan for the remaining two goals. If a plan is found for G′ = {g1, g2}, backtracking finishes
and {g1, g2} is expanded. {g1, g2, g4} is a terminal node and improves utility, so the planner is
invoked again (Figure 4b). If no plan is found for it, it will be added to D and the algorithm will
backtrack. In this case, it will not try to find plans for the parent node as its utility is not higher
than the maximum found (umax = 2). The next terminal node with a higher utility is {g1, g3, g4}

(Figure 4c). If no plan is found again, the branch rooted on g1 will be completely explored and

4As said, this is only true if the external planner is given enough time to find a plan or prove that no plan exists. In
any other case it may happen that no plan is found for the set, but adding a new goal guides the planner in such a way
that a plan is found for the superset. In our experiments the external planner is usually not able to prove no plan exists.

12

select-goals-and-plan will continue exploring the remaining branches where no set improving
the utility exists (Figure 4d). Once select-goals-and-plan finishes, enforced-select-goals-and-
plan will be invoked. The first node improving utility is {g2, g3, g4} (Figure 4e). If no plan is
found, the search continues, but all the nodes with higher utility (u > 2) are already pruned, so
the algorithm finishes.

Distances are used to prune successors (Equation 1) but play a minor role in search; they
will only be used to break ties if more than one node have the highest utility. Despite how close
a goal seems to be to the previously selected one, it will only be picked up if it is the highest-
utility one among the successors. But, when all goals have equal utility, the next selected node
for expansion will be the closest one to the current node. In such case, distances are the only
criteria to select the next goal. In the experimental section we will see how this slightly different
behavior impacts the quality of the found plans.

4.3. Analysis of the Goal Selection Algorithm

In this section we will analyze our algorithm, determine the computational complexity of
selecting goals using our approach, and compare it with similar works that also select goals.
Given that the empty plan is always a solution for the satisficing no-hard-goals OSP task, any
algorithm generating the empty plan is trivially complete. If we ignore this trivial case and let
π(G′) be a plan achieving a given set of goals G′ and Gsol = {G′ | ∃π(G′),C(π(G′)) ≤ cb}, the
set containing all the sets of goals for which a plan exists with cost less than or equal the cost
bound, the algorithm will be asymptotically complete if it is able to find a solution for at least
one G′ ∈ Gsol if given enough time and memory. It will be optimal if it guarantees that it will
find a plan for any of the goal sets in G∗ = {Gx ∈ Gsol | U(Gx) ≥ U(Gy),∀Gy ∈ Gsol}, the set of
optimal goals sets.

Theorem 1. The algorithm is sound if the external planner is sound and returns a plan whose
cost is less than or equal to the cost-bound.

Proof. According to Definition 5, any plan whose cost is less than or equal to the cost-bound is
a valid plan for the only soft-goals OSP problem. Let G′ be a selected set of goals and π(G′) the
plan found for it by the external planner. Given that the external planner solves a cost-bounded
problem if it is sound and returns solutions not exceeding the cost-bound all the plans it finds
will be solutions for the OSP problem and then π(G′) will be a valid solution.

The algorithm is not complete due to the limited time given to the external planner. But, it is
asymptotically complete and optimal if given enough time and memory.

Proposition 1. If the planning space of the generated Pcb = {F, A, I,G′, c, cb} is finite, the ex-
ternal planner is sound and complete and it is given enough time and memory resources, the
algorithm will not prune any solution.

Proof. The only pruning we perform over a standard planner is due to the use of D, the set of
pruned sets of goals. The set G′ will be pruned (added to D) if and only if the external planner
is not able to find a plan for it. Assuming finite planning space and enough time and memory,
a sound and complete external planner will be able to either find a plan or exhaust the search
space and prove no plan exists. Successors of a node in the DFBnB search only add one goal to
the selected goals list. If there is no plan for the goals in node G′, there will be no plan for any
superset of them, so no descendant of it will be a solution. Therefore, the pruning defined by

13

I

g1

g2

g3

g4

7

4

g4

8

5

g3

6

g4

7

4

g2

10

g3

I g1 g2 g3 g4
g1 4 0 5 6 7
g2 10 4 0 4 8
g3 11 5 4 0 7
g4 12 5 4 8 0

11

g4

12

(a) Initial selection of goals: {g1, g2, g3, g4} is a terminal node improving U(∅).

I

g1

g2

pruned g4

pruned

8

5

g3

6

g4

7

4

g2

10

g3

11

g4

12

(b) Second terminal node: {g1, g2, g4}. The algorithm backtracked until a plan was found for {g1, g2} and
its only non-pruned child was expanded.

I

g1

g2

pruned pruned

5

g3

g4

pruned

7

6

g4

7

4

g2

10

g3

11

g4

12

(c) Third terminal node: {g1, g3, g4}. No plan was found for {g1, g2, g4}.

Figure 4: Example of different iterations of goal selection and planning when all the goals have equal utility. The cost
bound is 20. Nodes represent goals, numbers on arcs are the distances among them. The utility of a node is equal to its
depth, and has been omitted for clarity. Goals selected at each iteration are marked in bold.

14

I

g1 g2

g3

c > 20

4

g4

c > 20

8

10

g3

g2

c > 20

4

g4

c > 20

7

11

g4

g2

c > 20

4

g3

c > 20

8

12

(d) No plan is found for {g1, g3, g4} and no goals’ set under the cost-bound improves the best
utility found so far. select-goals-and-plan has exhausted all its search space. All branches
containing g1 were explored in previous iterations and have been omitted for simplicity.

I

g1 g2

g3

g4

7

4

g4

8

10

g3

11

g4

12

(e) enforced-select-goals-and-plan ignores distances and finds {g2, g3, g4}.

Figure 4: Example of different iterations of goal selection and planning when all the goals have equal utility. The cost
bound is 20. Nodes represent goals, numbers on arcs are the distances among them. The utility of a node is equal to its
depth, and has been omitted for clarity. Goals selected at each iteration are marked in bold.

using D does not prevent the planner finding a solution to the task and the complete algorithm
(rpld) will not prune any solution to the OSP task.

Proposition 2. If there is at least one element Gx ∈ G∗ with one permutation σ = (g1, g2 . . . gk),
k = |Gx| such that ∆(σ) ≤ cb (at least a permutation of an optimal set of achievable goals has an
estimated cost less than or equal to the cost-bound), select-goals-and-plan will eventually select
it if given enough time and resources.

Proof. select-goals-and-plan implements DFBnB, a complete and optimal search algorithm [31].
It will try to find a plan for any terminal node, as well as for any node such that the algorithm
did not find a solution for one of its successors and the node’s utility is higher than the maximum
one. Then, select-goals-and-plan will iteratively find increasingly higher utility solutions until
it eventually expands a branch containing a set of goals with optimal utility.

Proposition 3. If ∆(σ) > cb for all the permutations σ = (g1, g2 . . . gk), k = |Gx| of all Gx ∈

G∗, enforced-select-goals-and-plan will eventually select one of them if given enough time and
resources.

Proof. This Proposition is proved in a similar way as Proposition 2. enforced-select-goals-and-
plan is a regular DFBnB, where a plan is searched for all nodes increasing utility. Eventually an
optimal node will be selected.

15

Theorem 2. If the external planner is sound and complete, the planning space finite, and the
planner is given enough resources, rpld is asymptotically complete and optimal.

Proof. The proof is trivial considering Propositions 1, 2 and 3 and considering that the external
planner will always find a plan for an achievable set if such a plan exists and it is given enough
time and resources.

Regarding computational complexity, the most computationally expensive component of our
approach within a single goal selection and planning iteration is the generation of the relaxed
plans needed for the distances’ computation. For an n-goals problem, n suboptimal relaxed
plans have to be extracted to compute ∆Ix, whose time complexity is polynomial in the size of
the task [32]. These relaxed plans are applied to obtain the new initial states for each goal. The
complexity of the application operation is linear in the number of steps of the relaxed plans.
Next, for each goal gx, n-1 relaxed plans need to be created to compute ∆xy. Therefore, a total of
n + n(n − 1) = n2 relaxed plans have to be computed.

The single other work directly using relaxed plans to select goals [23], has a worst-case com-
plexity, when low oversubscription, of n ×

∑n−1
i=1 i ≈ n3 relaxed plans. In case of high oversub-

scription, i.e. only a few of the goals can be achieved, the practical complexity of their algorithm
decreases dramatically, while ours remains constant, as we need to compute all the distances
despite of the degree of oversubscription. There are two possible improvements to decrease the
complexity of our algorithm. First, to compute ∆ during goal selection, which would reduce the
number of needed relaxed plans. In the worst case, when all goals have the same utility and all
are selected, we would need n relaxed plans for the initial node, n − 1 for the second level and
so on, which reduces the complexity to (n2 + n)/2 relaxed plans. Second, we can reuse part of
the effort performed to create a relaxed plan, which consists of two time-polynomial phases; a
forward expansion of the initial state until reaching a state where all goals are achieved and a
backward selection of actions to construct the relaxed plan. Currently, we are performing both
steps for all goals, but the first step can be reused. In order to compute ∆Ix, we can expand the
graph until all goals are reached. The obtained graph, which is exactly equal to the one gener-
ated for the farthest goal, can be reused to extract relaxed plans for all goals, thus saving n − 1
expansions. The same can be done to compute ∆xy, saving n − 1 extra expansions. We plan to
explore these improvements in the future, to evaluate if they really make practical differences in
the time spent computing distances.

Once distances are computed, and before starting the first planning process we still need to
select the goals. In comparison, Sanchez-Nigenda approach just needs to pick the set with highest
estimated net-benefit and start planning. But the use of Depth-First search for the first selection
of goals, with a maximum depth of n in case all the goals are selected, makes the maximum size
of the search graph to be (n2 + n)/2. This results in goal selection time to be negligible compared
to the time needed to compute the relaxed plans, as there is no backtracking when searching for
the first set of goals.

The construction of the Orienteering Problem (OP) by Smith also uses relaxed plans [1].
One relaxed plan for each goal is created at each node in the OP from which the goal can be
achieved. This allows his algorithm to estimate the cost of reaching the goal from that node. The
size of this set of nodes depends on the number of nodes in the OP from which the goal can be
achieved, considering that the OP is a projection of the original state space into a subset O of
the propositions of that space. The size of this OP is exponential on the number of independent
propositions in O, which depends on a threshold that has to be defined for each domain, and

16

that, in the worst case, can be the complete state space for the problem. Our goals selection can
be also recasted as an OP of linear size n, where goals are cities, utilities rewards and distances
travel costs.

5. Experimental Setup

In this section we will present the experimental setup: planners, domains and problems,
quality metrics and selection of parameters. All the experiments have been conducted on an
Intel Xeon X3470 4 cores CPU at 2.93 GHz running Ubuntu 14.04.4. A maximum of 14 GB of
memory out of the 16 GB available has been allowed. Only one out of the 4 cores has been used
to avoid interactions among them to distort the results. Following the IPC rules, a total of 1800
seconds have been allotted to each problem. To compute the distances between goals we have
used a LISP implementation based on the parser of the Sayphi planner [33], which implements
the computation of relaxed plans as in the ff planner [8]. All solutions have been checked using
the VAL plan validation software [34].

5.1. Planners
In addition to our full rpld approach, we report the results of a non-incremental one, named

rpld f irst, which stops after finding the first solution. Despite some recent work on optimal
OSP [4, 5], there are no freely available satisficing planners tailored for it, as most of the planners
focus on the net-benefit problem. But, as said, OSP problems can be expressed using PDDL3.0
preferences and there are also some compilations to classical planning [4] that can be used for
comparison. Taking this into account we have compared our technique against:

• An optimal OSP approach, based on the combined results of the four configurations of the
optimal OSP planner recently presented by Katz et al. [4]. The four configurations will be
run and their results added as if they were a single planner. We will call it optimal in the
tables. Even if we do not expect it to behave well in hard tasks, it has been included as a
baseline for simple tasks.

• Two PDDL3.0 compliant planners: mips-xxl [20] and Optic [25]. mips-xxl is an optimal
planner, but it is able to return intermediate non-optimal plans too. It ranked second in
the last edition of the net-benefit track (IPC-2008). gamer [21], the winner, exhausts the
memory even with the simplest OSP problems and no other editions of that track have been
carried out since then. Meanwhile, Optic is one of the rare modern planners supporting
PDDL3 preferences, and although it is specially designed for temporal domains it also
handles non-temporal ones.

• A compilation of OSP into classical planning: as said in Section 3, it is easy to adapt Key-
der and Geffner compilation [27] to deal with OSP. This compilation has shown the best
performance for net-benefit problems. To our understanding this compilation is similar
to the soft-goals one of Katz et al. [4], but we will use a satisficing planner to find a plan
instead of looking for the optimal one. We will call it compiled.

• A greedy baseline approach: it sorts all the goals by their utility and selects the highest
utility one. A new problem is created that only contains this goal. If no plan is found, the
goal with the second highest utility is selected and so on. Once a plan with one goal has
been found, all the combinations of two goals with higher utility than the one found in the

17

previous step are selected and sorted by utility. Again, a search for a plan is performed. If a
plan is found, the algorithm proceeds adding one more goal at a time. In order to improve
the search, if Gn

i is a set of n goals for which no plan has been found at the current step,
all the supersets of Gn

i are pruned. In problems with a large amount of goals, just finding
the n combinations of k goals and sorting them by utility requires a significant amount of
memory, exhausting it after a few levels.

• A satisficing version of the Katz et al. planner, named Katz-sat in the tables. It has been
modified to output plans each time a better utility is found instead of just returning the
optimal plan. Experiments have been also performed with the four configurations. In this
case, they are not combined, the same way that the results of the different configurations
of rpld, compiled or baseline are not combined.

We have also performed experiments on some of the optimal domains proposed by Katz et
al. [4] to evaluate how far from the optimal our solutions are. In those experiments optimal has
been run in an Intel Xeon 3.4 GHz with 30 GB of memory, out of the 32 GB available, in an
attempt to increase the number of problems for which an optimal solution is known.
rpld, baseline and compiled rely on an external planner. In order to make fair comparisons,

we use the same planner for all of them. The natural choice is to select one of the planners of
the novel cost-bounded track of the IPC-2018 [35]. They are designed exactly for our needs:
finding a plan under a cost bound. compiled is a multiple cost function (MCF) task [4]. One
cost function accounts for the penalties and the other one for the actions’ cost. The former is
increased when a goal is not achieved and the later when an action is applied. The cost-bound is
set for the second one and the goal is to find plans minimizing the first one. All but one of the
cost-bounded planners rely on the Fast-Downward planner parser, which only allows the actions
to increase a numerical function, the total-cost. Thus, they cannot be used for MCF problems
as MCF requires some actions to increase the cost function and other actions to increase the
penalties function. The only exception is the family of bfws planners [36]. But these planners
only allow to set the cost-bound over the formula defined on the metric, so it is not possible to
bound the total-cost and minimize the penalties at the same time. If the metric minimizes the
total-cost, then it forgoes all the goals to find an optimal zero-cost plan. If the metric minimizes
the penalties, then it finds plans exceeding the cost-bound as there is no way to encode it in the
problem. Finally, if the metric is a combination of both, it can still find incorrect plans as part of
the budget for penalties can be used to include actions that exceed the cost-bound.

Another way to encode the cost-bound consists of using sub-optimal planners that support
numeric preconditions: a numeric precondition checking that the cost-bound is not exceeded can
be added to every action increasing it. This is valid for the rpld, baseline and compiled versions.
For the later, the metric can be set to minimize the penalties. According to IPC results, bfws is the
best sub-optimal planner supporting numeric preconditions. It is also a good example of a non-
portfolio state-of-the-art planner: it was the first non-portfolio planner both in the cost-bounded
track (4th overall) and in the satisficing track (3rd overall).

As these three techniques are planner-independent and to ensure results are not affected by
the external planner used, we have also reviewed the competitors of the sequential-satisficing
track of the IPC-2014 [37] and IPC-2011 [38]. In IPC-2014, the candidates, in descending
order of overall score, are bfs(f), dae yahsp, yahsp3-mt and yahsp3. The yahsp family ignores
numeric preconditions, creating incorrect plans that do not respect the cost-bound, leaving bfs(f),
which can be considered a predecessor of bfws, as the only reasonable election. More candidates

18

can be found in IPC-2011: probe, cbp2, dae yahsp, yahsp2, yahsp-mt, cbp, lprpg-p, acoplan and
acoplan2. probe has the same problem as the yahsp family, so we chose the second best, cbp2.
We will use bfws, bfs(f) [39] and cbp2 [40] for the baseline, compiled and rpld approaches. bfs(f)
sometimes returns invalid plans exceeding the cost-bound. This behavior is rarely observed in
the compiled problems, but it can be oserved quite often in the rpld and baseline approaches.
The same applies to bfws. It finds several invalid plans for compiled, where, as explained, the
cost-bound cannot be used. But it does not find invalid plans for the other two approaches, which
can use it (see Section 6.3 for details).

5.2. Domains and Problems Description

The former planners have been tested in the 14 domains of the sequential-satisficing track
of the IPC-20115. In order to create OSP tasks, a new numeric literal has been added to each
domain to account for the cost-bound. All the actions increasing the cost of the plan have a
new precondition that does not allow to apply them if their cost plus the current accumulated
cost, exceeds the cost-bound. We generated new problems after transforming the domain. For
each original problem of the IPC, the minimum cost found by any planner in the IPC-2011 has
been used to create three equivalent problems, with a cost-bound of 25%, 50% and 75% of that
minimum cost, respectively. These three values allow us to study the variations in performance
for high (25%), medium (50%) or low (75%) oversubscription. In cases where a problem was
not solved by any planner, an estimated cost of the problem has been established. This is the
case of several Floortile problems, and in the last problem of Nomystery and Sokoban. As usual
in OSP, all the original goals have been marked as soft-goals; no hard-goals are considered. All
domains use action costs, except for Tidybot and VisitAll where the cost of the plan is the plan
length. Both have been modified adding a cost of one to every action.

To test the influence of different distributions of utilities among goals, two versions of each
problem have been defined. In the first one, that we will call util1, u(gi) = 1,∀gi ∈ G. In the
second one, util10, the utility of each goal is a random natural value, 1 ≤ u(gi) ≤ 10,∀gi ∈ G.
This gives a total of six versions for each original problem (three degrees of oversubscription and
two utility distributions), which results in 120 problems per domain.

As we mentioned before, OSP problems can be seen as Multiple Cost Functions (MCF)
ones, with the utilities being the primary cost and the cost-bound the secondary one. If we
only maximize utilities, or more commonly minimize penalties, the planners will search blindly
with respect to the cost-bound. A way to tackle this would be to modify their heuristics, so
they also take into account the cost-bound as a secondary criterion [30, 41]. However, this
would imply modifying the code of the planners, and in the case of compiled, it would make it
no longer planner-independent. An alternative way, which also keeps the compilation planner-
independent, consists of modifying the problem metric. The problem can be converted into a
kind of net-benefit-OSP one, i.e. both the total cost and the penalties have to be minimized.
However, the focus needs to be on the penalties; the planner should not drop any achievable
goal because its utility is lower than its cost. In order to test whether guiding planners by cost
improves results or not, we have created problems with different metrics depending on a fac-
tor that relates the penalties and the plan cost: minimize(+ (penalties) (* factor (/

(plan-cost) (cost-bound)))). We have tried four different values for factor:

5Available at: http://www.plg.inf.uc3m.es/ipc2011-deterministic/

19

• factor=0: the planner only focuses on the penalties, using the cost-bound just as a way
to prune branches during search.

• factor=1: the relative cost of the plan with respect to the cost-bound has the same weight
in the metric than a goal with utility one.

• factor=2: the relative cost of the plan with respect to the cost-bound has the same weight
in the metric than a goal with utility two. In our first set of experiments, where all goals
have u = 1, this means the relative cost of the plan is equivalent to two goals.

• factor=
∑

gi∈G
u(gi)/2: The relative cost of the plan with respect to the cost-bound is equal to

half the addition of the utilities of all the goals. From the three options, this is the approach
focusing more on the plan cost and less on the penalties.

This yields a total of four different configurations for compiled, mips-xxl and optic, three of
them taking into account the cost-bound to guide the planner and one searching blindly with
respect to it. The higher the factor in the former metric is, the more informed the planner is with
respect to the cost-bound. However, it will also be more likely that the planner will try to select
states minimizing the plan cost instead of the penalties. In the extreme, if this factor is very high,
the empty plan could be the best solution.

Tables 1, 2 and 3 describe various characteristics of the selected domains that could influence
the results. Table 1 shows whether some goals are already achieved in the initial state and if they
can be deleted. In that case, the utility of the empty plan will be positive and plans can have
lower utility if they delete some of those goals. The table also shows which type of predicates
appear in the goals. In ParcPrinter some predicate goals can be undone. For instance, (Sideup)
which is never present in the initial state, or (Notprintedwith), which is present in the initial
state. But the latter cannot be re-achieved once deleted, so a valid plan will never delete it. There
are also goals, like (Hasimage), which are never present in the initial state and that cannot be
deleted once achieved. In the case of PegSolitaire all goals can be undone and plans usually
require to delete some of them. In Scanalyzer, (analyzed car) cannot be deleted, and as
a consequence it never appears in the initial state, while (on car segment) can be undone
and sometimes it appears in the initial state. In Sokoban, there are problems where stones have
to be moved from their original locations to be placed again at the same place at the end. In
VisitAll goals are permanent; once a location has been visited, it cannot be made unvisited. But
the initial location is also a goal of the plan, so the empty plan always has some utility. In the
case of WoodWorking, there is also a mix of both types of goals: (colour), (treatment)
and (surface-condition) can be undone, while (available) and (wood) are not reachable
again once undone.

Table 2 shows the minimum, maximum and median number of goals of the problems of the
selected domains. As it can be seen, there is a huge variation among domains.

Table 3 shows the empty-plan utility as a percentage of the total utility for all the domains
where there is at least one problem with U(∅) > 0. In general, the larger this value is, the more
difficult will be to find a plan improving it. The first column shows the domain name and the
number of problems where the utility of the empty plan is not null. The second and third column
show the mean empty plan utility vs. total utility ratio for the util1 and util10 configurations,
respectively.

20

Domain Deletable Goals at Predicates on goals
goals initial state

barman all no (contains container beverage)
elevators all no (passenger-at passenger count)
floortile no no (painted tile color)
nomystery all no (at locatable location)
openstacks no no (shipped order)
parcprinter some yes (hasimage sheet side image)

(sideup sheet side)
(stackedin sheet location)
(notprintedwith sheet side color)

parking all yes (behind-car car car)
(at-curb-num car curb)

pegsolitaire all yes (occupied location)
(free location)

scanalyzer some yes (on car segment)
(analyzed car)

sokoban all yes (at-goal stone)
tidybot no no (object-done object)
transport all no (at-package package location)
visitall no yes (visited place)
woodworking some yes (available woodobj)

(surface-condition woodobj surface)
(treatment part treatmentstatus)
(colour part acolour)
(wood woodobj awood)

Table 1: Characterization of domain goals. The second column states whether a goal can be removed once it has been
achieved. The third column shows if there are problems where some goals are already present in the initial state. The
last column shows the predicates that can appear as goals.

21

Domain Minimum Maximum Median
barman 9 14 12
elevators 14 60 40
floortile 12 49 25
nomystery 6 15 11
openstacks 50 250 115
parcprinter 36 90 54
parking 22 32 27
pegsolitaire 33 33 33
scanalyzer 16 36 24
sokoban 1 12 5
tidybot 4 12 4
transport 12 22 20
visitall 144 2500 962
woodworking 9 140 98

Table 2: Minimum, maximum and median of the number of goals for each domain.

Domain Mean utility of the empty plan
util1 util10

parcprinter (20/20) 48%±3% 47%±4%
parking (13/20) 4%±3% 4%±4%
pegsolitaire (19/20) 44%±15% 45%±15%
scanalyzer (14/20) 35%±24% 37%±22%
sokoban (3/20) 5%±14% 6%±17%
visitall (20/20) 0% 0%
woodworking (20/20) 12%±12% 13%±15%

Table 3: Mean utility of the empty plan, in percentage of the total utility, for the domains where the empty plan has utility
bigger than zero. The numbers in parenthesis are the number of problems where U(∅) > 0.

5.3. Plan quality metrics

We measure the performance of the different planners similarly to the last IPCs; it is relative
to the performance of the other planners. For each problem, a planner gets a quality score be-
tween 0 and 1 in the following way. Let (u1, u2...un) be the utility found by each planner for a
given problem p, or 0 if the planner does not solve the problem. n is the number of planners, and
umax = max (u1, u2...un), the maximum utility found by any planner for this problem. For that
problem, planner i receives a quality score of ui/umax. The total score of a planner for a domain
is the sum of the scores for each individual problem in that domain:

∑
p

ui/umax. As there are 20

problems per domain, the score will be in the range 0 to 20.
This score schema is the standard one used by the planning community, but it has some

drawbacks [42]. For instance, it does not take into account the difficulty of the problems. Both
easy and difficult problems contribute equally to the score. An alternative score that partially
solves this problem is to consider the accumulated utility for a domain. Difficult problems tend
in general to have more goals, and consequently their maximum achievable utility tends to be also
higher. Adding the utilities of the goals achieved for all the problems in a domain gives a good
idea of the performance of a planner in that domain, emphasizing the performance on difficult

22

problems. For each domain, planner i will obtain a utility score of
∑
p

ui/
∑
p

umax, a number in the

range 0 to 1. To ease comparisons between quality and utility, the utility score will be multiplied
by 20, so both metrics will be in the range 0 to 20.

5.4. Selection of parameters

Our algorithm receives one parameter, the time to search for a plan before a set is discarded
and marked as probably still oversubscribed. The number of selected goals can be considered to
set this parameter value. Usually, the more goals selected, the longer the time needed to find a
plan. But the time bound for the planner also depends on the domain; there are domains where
finding a plan is more difficult than in others, even in problems with a similar number of goals.
As an estimation of both aspects, in our previous work [10] we used the time spent in distances
computation, which depends on both the number of goals and the problem. The planner was
given the same time used to compute distances to find a plan. As this time was sometimes very
small (in the order of hundreds of milliseconds), a minimum of 10 seconds was allotted. This
approach has good performance in small and medium size problems, but when the number of
goals is high, the time spent computing distances is high, too. This usually leads to devoting too
much time to unsolvable sets. In turn, this exhausts the available time for planning, resulting in
no solution found.

Alternatively, we can set the planning time by analyzing the general performance, in terms of
time, of the planners we are using, and to set a fixed value for the planning time. When faced with
the original non-oversubscribed problems, one of the used planners, cbp2, found the first solution
in less than 45 seconds in 69% of the solved problems, in less than 60 seconds in 74%, and in
less than 90 seconds in 77% of them. In contrast, only 11% of the problems needed more than
300 seconds to be solved. This is consistent with the literature; if a planner does not find the first
plan quickly it is very likely it is not going to find it at all [43]. In our case we are only interested
in this first solution and we are planning for easier problems than the original ones, given that
they will almost always have a lower number of goals. So 90 seconds seems to be a good choice
for the time to search for a plan before giving up. This alternative has the disadvantage of not
increasing the time for complex problems, but this is somehow compensated by the incremental
behavior. Usually, it is better not to spend too much time with a set of goals, finding at least one
solution that might be improved later. This is commonly also true in real applications: finding a
bad solution is better than not finding a solution at all.
baseline will also be given 90 seconds to solve each combination of goals before marking

it as non-achievable and switching to the next one. If it marks all the sets for a given level as
non-achievable, the time is doubled and search starts again with the highest utility set.

6. Experimental Results

In this section we summarize the results of the paper. First, we will analyze the behavior
of our rpld approach (Sections 6.1 and 6.2). The objective of this first set of experiments is to
evaluate how long it takes to compute the distances and select the goals, and to assess how often
the procedure returns sets that are still oversubscribed. Next, we compare the performance of
rpld against the remaining planners in terms of quality and utility (section 6.3).

23

6.1. Distances Computation
Figure 5 shows graphically the time rpld needed to compute the distances for each domain

and problem. For the sake of simplicity, this figure does not show data for VisitAll. In this
domain, the algorithm exhausts the 1800 seconds bound while computing the distances in all
problems, except for the four first ones. This is due to its high number of goals. In this domain,
times range from 40 seconds for the simplest problem (144 goals), to about 1300 seconds for a
324-goals problem. For problems with 400 goals or more, distances cannot be computed in the
alloted time. Scanalyzer is not shown either. Our parser exhausts the available memory while
instantiating the problem in most cases. In the four problems it solved, all of them with 16 goals,
the time to compute distances lies between 17 and 20 seconds.

In the remaining domains, distances computation times vary from less than a tenth of second
to hundreds of seconds. In Barman, Floortile, Parcprinter, PegSolitaire, Sokoban and Tidybot
distances are computed in less than 10 seconds, and in many cases in less than one second.
Meanwhile, Parking and Transport always need less than 30 seconds. In NoMystery, time grows
dramatically with the number of goals, ranging from less than one second for a 6-goal problem
to more than 300 seconds for a 14-goals one. But time also depends on the problem structure as
the two 15-goals problems take 192 and 77 seconds, respectively. Openstacks smallest problems,
with 50 goals, only take 2 seconds, but one of the two biggest ones, with 250 goals, exhausts the
1800 seconds, taking the other one 1500 seconds. In Elevators, time varies between one second
(14 goals) and more than 400 seconds (60 goals). In Woodworking, most problems, having 69 or
more goals, need more than 100 seconds. The exception is a problem with only 9 goals which
takes less than 1 second.

So, as expected, the distances computation time depends on the domain and problem. Prob-
lems with similar number of goals can require very different computation times, even in the same
domain. For example, problems in PegSolitaire and Parking have similar number of goals, in the
order of 30. In PegSolitaire the computation takes about one second, while in Parking it takes
more than 10. Even if ParcPrinter is one of the domains with more goals, up to 90 with a median
of 54, distances are computed always in less than three seconds. Also in some domains, as pre-
viously said for NoMystery, problems with the same number of goals can take values as different
as 77 and 192 seconds.

Figure 6 shows the computation time of distances per goal. It varies between some millisec-
onds for the simplest problems of Floortile to about 20 seconds for some NoMystery problems.
When considering problems with a similar number of goals, ParcPrinter has the lowest distances
computation times per goal, while NoMystery and Elevators have the highest. A total of n2 re-
laxed plans have to be computed, so in most cases the time tends to grow polynomially with the
number of goals. The two extreme cases are Openstacks, where small increases on the number
of goals result in dramatic increases on the time per goal and Woodworking, where the time per
goal grows slowly with the number of goals.

6.2. Goals selection
Given that a Depth-First algorithm is used to select goals, time devoted to perform this step

is quite short. The first goal set is selected in a millisecond or less in 66% of the problems, and
in less than a tenth of a second in 96% of them. Only 12 problems out of the 1680, 7 of them in
Visitall, needed more than one second. The maximum time observed was 12 seconds for one of
the Visitall problems.

We analyze now if distances are a good estimator of the real costs of achieving goals. Or, at
least, if they allow us to select non-oversubscribed sets. We have allotted the external planner

24

Figure 5: Time to compute distances. The x axis represents the problem number, and the y axis represents the time in
seconds spent to compute the distances for each problem (logarithmic scale). Data for VisitAll and Scanalyzer domains
are not shown.

25

Figure 6: Time to compute distances per goal. The x axis represents the number of goals, and the y axis represents the
average time in seconds spent to compute the distances per goal (logarithmic scale). Data for VisitAll and Scanalyzer
domains are not shown.

the remaining time until the 1800 seconds limit to find a plan for the initial selected set. We
have performed the experiments with bfws, bfs(f) and cbp2. Even if not finding a plan is a good
indicator of oversubscription, it does not necessarily mean the set is still oversubscribed. It may
happen that another planner would be able to find a plan.

Table 4 shows the percentage of problems for which a plan for the first selected set was found
by any of the planners. A percentage close to 100% means that there was little oversubscription in
the selected sets for that domain and that our approach was good in discovering a set of achievable
goals. Conversely, low percentages mean most sets were still oversubscribed: distances were
highly underestimating the cost of reaching goals, which made the algorithm select more goals
than those that can be achieved. Again, Scanalyzer and Visitall have been removed from the
analysis as the low number of problems for which goals could be selected does not allow us to
draw relevant conclusions.

As expected, data show that our approach tends to overestimate the number of achievable
goals. When all goals have the same utility, more than half of the problems seem to be still over-
subscribed in 8 out of the 12 domains: a plan for the selected goals was found in less than 50%
of the problems. The more oversubscribed domains are Elevators (only 12% of the problems are
solved), Floortile (12%), PegSolitaire (18%) and particularly Transport (2%). In these domains,
distances are not a good estimator of real costs. On the other hand NoMystery, Openstacks and
Woodworking obtain quite good results, as most problems were not oversubscribed.

The results for high oversubscription are generally better. This is not surprising: as the cost-
bound is increased (low oversubscription) more goals can be added to the set and the chances
that it is oversubscribed are higher. Exceptions are PegSolitaire and NoMystery. In PegSolitaire,
costs of the plans are small, between 7 and 19. Several goals can be achieved at zero cost once
the first one is achieved and almost half of them are true in the initial state. Having a higher cost
bound may help to reach the goals that are not true in the initial state even if the set is bigger,
given that many of the newly added goals will be already available in the initial state or can be

26

util1 util10

Domain H M L µ H M L µ

barman 50% 40% 35% 42% 65% 65% 60% 63%
elevators 20% 10% 5% 12% 50% 60% 50% 53%
floortile 30% 5% 0% 12% 90% 90% 75% 85%
nomystery 70% 60% 80% 70% 55% 95% 95% 82%
openstacks 95% 95% 95% 95% 85% 95% 95% 92%
parcprinter 50% 40% 40% 43% 65% 65% 60% 63%
parking 50% 30% 30% 37% 75% 85% 100% 87%
pegsol 5% 20% 30% 18% 30% 85% 95% 70%
sokoban 70% 45% 50% 55% 50% 40% 40% 43%
tidybot 55% 25% 15% 32% 60% 30% 25% 38%
transport 5% 0% 0% 2% 10% 10% 10% 10%
woodworking 100% 100% 100% 100% 100% 100% 100% 100%

Table 4: Percentage of problems for which a plan is found for the initially selected goals set, allowing the planner all the
remaining time after selecting the goals, up to 1800 seconds. We show data for each utility profile and oversubscription
degree. Data for Scanalyzer and Visitall domains are not shown.

achieved with zero cost once another goal is reached. In NoMystery, differences between the
three degrees of oversubscription are smaller and do not allow us to draw any clear conclusion.

Results are better when goals have different utilities. At least half of the problems are not
oversubscribed in nine domains. The main reason is that for the util10 setting, goals are se-
lected greedily based on their utility, using the distances just to break ties and check if the cost-
bound has been reached. Thus, in general less goals are selected. The highest improvements
occur in Floortile and PegSolitaire. The main exception is Sokoban, where the distances seem
to capture well which goals are related and not considering them in the selection process results
in worse performance. Results for high oversubscription are better, except for PegSolitaire, No-
Mystery and Parking. This had been observed before when all goals had the same utility. In
NoMystery, the cost of reaching a goal depends on the connections among locations. Greed-
ily selecting the goals tends to add a low number of goals to the list, and increasing the bound
eases finding a path reaching all of them even if more goals are added. Parking gets a 100% of
non-oversubscribed problems for low oversubscription. It seems that, again, increasing the cost
bound eases finding plans even if the number of selected goals is also slightly raised.

Next, we wanted to measure to which extent we are underestimating real costs. Therefore, we
have allowed the planner to search for 90 seconds, removing one goal if a plan is not found. This
is repeated until a plan is found or no goal is left. We can get an estimation of how oversubscribed
the initial set was, or at least how oversubscribed it was to be solved using our approach, by
comparing the number of achieved goals with the number of initially selected ones.6 Table 5
shows the achieved/selected goals ratio for each domain, utility profile and oversubscription
degree.

The worst results are obtained in Barman, Tidybot and Transport. For Barman the main
reason is a combination of the low number of goals and the poorly informed the relaxed plan
heuristic is in this domain (it is explicitly designed to challenge this heuristic). No more than

6This is only an estimation, as 90 seconds are usually not enough to exhaust the search space. As we are interested in
finding an achievable set and not on the time spent to do it, the overall process has not been limited by time, so finding
this set may have taken more than 1800 seconds.

27

util1 util10

Domain H M L Total H M L Total
barman 63% 42% 33% 39% 58% 39% 31% 34%
elevators 81% 73% 70% 69% 79% 81% 79% 76%
floortile 86% 71% 64% 68% 98% 96% 94% 93%
nomystery 87% 91% 94% 90% 72% 98% 99% 94%
openstacks 100% 100% 100% 100% 90% 100% 100% 98%
parcprinter 95% 93% 92% 92% 80% 74% 74% 75%
parking 74% 69% 64% 66% 83% 89% 97% 91%
pegsol 63% 85% 88% 80% 83% 98% 100% 94%
sokoban 86% 80% 78% 81% 61% 73% 77% 77%
tidybot 59% 53% 51% 48% 61% 44% 58% 44%
transport 45% 42% 45% 42% 42% 39% 45% 39%
woodworking 100% 99% 98% 98% 99% 100% 100% 99%

Table 5: Percentage of selected goals achieved allowing the planner 90 seconds to find a plan. The last column for each
utility profile shows the accumulated results for all problems for a given domain: the total number of goals achieved in
that domain divided by the total number of goals selected. Data for Scanalyzer and Visitall domains are not shown.

five goals are selected in any problem in the high oversubscription setting, and four or less goals
are selected in 13 out of the 20 problems. Not achieving just a single goal of the selected ones
results in a high decrease in the percentage of achieved goals. For example, if only two goals are
achieved when three goals are selected, the success ratio is 66.6%. This was observed in seven
out of the 20 problems. For medium and low oversubscription, the results are worse, as expected.
In this domain, the results of util10 are worse than those of util1. The reason is that it has two
types of goals, with one of them much easier to achieve than the other one. To some extent, this
is captured by our approach when all goals have the same utility. But when goals have different
utilities, the greedy approach used to select goals ignores this fact.

Tidybot is also penalized by the low number of goals as in many problems only one or two
goals are selected. In the case of Transport, results are also quite bad for all the degrees of over-
subscription and both utility profiles. The heuristic highly underestimates the cost of achieving
the goals, resulting in highly oversubscribed sets. Actually this was reflected on the bad results
of the previous table.

The good results for Elevators, Floortile, Parking and PegSolitaire contrast with their poor
performance in Table 4. This indicates the original sets were not too oversubscribed and that
our estimation was just adding a few extra goals. We obtain good results in NoMystery and
OpenStacks. This was expected considering their performance in Table 4. Parcprinter also
shows good results, but when goals have different utilities, the greedy selection does not take
into account the tight interaction between goals: up to six goals are used to describe the way a
given paper sheet must be printed.

In Sokoban no major differences can be seen regarding utility, except for high oversubscrip-
tion. But, differences are probably due to a small number of problems, where one goal is not
achieved, given that this is one of the domains with a lower number of goals. Finally, results for
Woodworking are quite good, but slightly worse than those in Table 4. These results show that
90 seconds can be sometimes not enough in that domain to find a plan for solvable problems.

Results show that the distances overestimate the number of achievable goals in most prob-
lems. However, it may happen they are underestimating for the remaining ones, as they could
return non-oversubscribed sets that contain far less goals than those that could be really achieved.

28

We will discuss that in the next section, where we will compare the results of the first selection
of goals against the results obtained by the whole rpld approach, which iteratively tries to add
new goals once a plan has been found.

6.3. Scores: quality and utility of the plans

Tables 6 and 7 show the accumulated scores in quality and utility for the 14 domains. We just
show the results of the best version for each approach, except in cases where various versions
have a similar score, but behave differently depending on the domain.

util1 util10

Planner High Medium Low High Medium Low
baseline-bfws 185.0 184.0 181.5 218.8 215.7 211.8
compiled-bfs(f) 131.2 131.9 127.2 127.9 120.0 121.9
compiled-bfws 109.1 106.4 112.1 143.5 129.9 122.9
compiled-cbp2 161.5 129.3 108.2 161.2 129.0 109.4
rpld-cbp2 225.7 208.1 188.4 226.1 214.9 202.2
rpld-bfws f irst 203.5 196.1 198.9 191.5 200.2 204.5
rpld-bfws 230.8 227.7 226.5 236.2 235.3 234.5
empty 48.2 39.5 34.9 46.2 38.1 33.9
Katz-sat 181.9 154.8 137.9 190.4 163.4 147.0
optimal 96.0 68.0 51.0 96.0 68.0 54.0
mips-xxl 94.2 73.8 63.9 94.7 77.5 68.4
optic 176.8 158.2 151.8 177.0 156.1 149.4

Table 6: Quality: summary of the results for all the domains.

util1 util10

Planner High Medium Low High Medium Low
baseline-bfws 185.1 178.2 174.0 221.1 212.3 205.6
compiled-bfs(f) 134.6 131.3 125.6 130.0 119.3 120.3
compiled-bfws 112.4 105.8 106.0 146.6 126.8 116.2
compiled-cbp2 157.3 123.4 102.1 157.1 123.2 102.3
rpld-cbp2 230.5 208.0 186.4 231.9 216.6 202.4
rpld-bfws f irst 202.5 195.5 197.9 195.5 202.9 206.7
rpld-bfws 235.0 228.5 226.6 241.8 238.7 237.1
empty 50.9 40.8 35.8 49.1 39.5 34.6
Katz-sat 183.4 151.5 133.2 194.5 160.1 140.9
optimal 88.2 60.9 45.8 89.0 61.6 48.2
mips-xxl 86.1 70.4 62.1 87.1 73.9 65.3
optic 174.9 159.4 153.3 177.3 157.8 150.0

Table 7: Utility: summary of the results for all the domains.

The best results, both in quality and utility, are obtained by rpld with the bfws planner, with
cbp2 planner close to it in high oversubscription but farther away in medium and low. The results
with bfs(f) are worse, as exceeding the cost bound makes invalid the found plans in 532 out of the
1680 problems. rpld-bfws obtains a slightly worse score when the degree of oversubscription

29

decreases, as expected (see Section 6.2). Scores are smaller for util1 than for util10, but for
util10 the difference with the second classified, baseline-bfws is smaller too.

Our non-incremental approach, rpld-bfws f irst is the second best in quality and utility for the
util1 setting. It gets 86% to 88% of the quality or utility of the incremental approach, showing
that the first selection of goals is quite good, even if it can be improved by adding more goals
once a plan has been found. Its performance slightly decreases for util10, obtaining a 81% to
87% of the score of the incremental version and falling below baseline-bfws. But it still beats
all other approaches. As a reminder, the goal selection is mainly driven by utilities for util10,
with distances only used to break ties. The slight decrease in score for high oversubscription
could indicate that distances are not only good to have an estimation of how many goals can
be achieved, but also point out which goals should be tried together as they seem to be closely
interrelated. However, differences are so small to be conclusive.
baseline-bfws, obtains the second place for all the oversubscription degrees, with quality

scores 18-45 points lower than rpld-bfws. baseline-cbp2, not shown in tables, behaves slightly
worse for high oversubscription and quite worse for medium and low, in a somehow similar
way as in rpld. This seems to indicate that cbp2 does not properly handle harder problems. Its
equivalent bfs(f) version is again penalized by the high number of invalid plans found. Both
quality and utility are higher for util10 than for util1, getting closer to rpld and surpassing
rpld f irst. It seems greedily selecting goals works better when goals have different utilities.
optic and Katz-sat are the third classified planners. Tables show the results of the factor=1

version for optic, which is slightly better than the non-cost-guided (factor=0) and the factor=2
ones. factor=2 obtains 24 points less than the other approaches for the util1 high oversub-
scription setting. When the guidance on the cost is increased (factor=

∑
u/2), results are quite

bad, because the planner tries to reduce the cost focusing on the actions’ costs instead of mini-
mizing the penalties. The best Katz-sat version is the blind one. It is better than optic in high
oversubscription, equivalent in medium and worse in low, with better results in util1.

Unlike in the net-benefit problem, the compiled approach does not work well and it only
beats mips-xxl. Running with bfs(f), the best results are obtained with factor=1, virtually tied
with factor=2. factor=

∑
u/2 obtains worse results except for low oversubscription, where it

has the best performance. When no guidance about the cost is given on the metric (factor=0),
compiled-bfs(f) is not able to find any solution other than the obvious ignore-all-soft-goals one.
bfs(f) produces a lot of invalid plans exceeding the cost, but usually at least one or two correct
plans are found for each problem in this case. Interestingly, the best performance is obtained
by the non-cost-guided version when using cbp2 for compiled. The factor=1 and factor=2
versions obtain between 5 to 8 points less. Giving more weight to the cost, as factor=

∑
u/2

does, results in a quite poor score, particularly in high oversubscription. This shows that guiding
the search by the cost can be a good or bad idea depending on the planner used for the compiled
problems. Comparing both planners, compiled-cbp2 clearly dominates in the high oversubscrip-
tion tasks, while compiled-bfs(f) dominates in the low oversubscription ones. compiled-bfs(f) is
slightly better for medium oversubscription when all goals have the same utility and behaves
worse when using different utilities.
mips-xxl scores even below optimal for high oversubscription, far away from the other ones,

mainly because it is not able to parse most problems. Its performance does not seem to depend
on the different versions of the problems, except for factor=

∑
u/2, where results are worse.

No major differences can be seen between quality and utility; planners are classified in the
same order. A detailed analysis shows that the utility scores of rpld are in general slightly better

30

than the quality ones, and the difference with the runner up is also slightly increased. However,
differences are too small to draw conclusions.

Tables 8 and 9 show the number of domains where each approach has the highest quality
and utility, respectively. Unlike the previous tables, which only showed the results obtained
by the best version of each planner, these tables combine the results of all the configurations:
baseline/rpld shows the number of domains where baseline/rpld is the best approach, either
running with bfws, cbp2 or with bfs(f). The values obtained with the different factors are also
combined for mips-xxl and optic. Similarly, results obtained by any planner with any factor

are combined for compiled. The performance of the best versions of each planner presented in
the previous Tables 6 and 7 is shown in parenthesis. As it can be seen, rpld dominates both in
quality and utility.

planner util = 1 1 ≤ util ≤ 10 total
25% 50% 75% 25% 50% 75%

baseline 1(0) 1(0) 2(2) 1(0) 3(3) 4(4) 12(9)
compiled 3(2) 2(1) 1(1) 3(2) 1(1) 1(1) 11(8)
rpld 9(4) 9(7) 8(6) 7(4) 5(2) 5(2) 42(25)
katz-sat 3(3) 2(2) 2(2) 3(3) 3(3) 2(2) 15(15)
mips-xxl 1(1) 1(1) 0(0) 1(1) 1(1) 0(0) 4(4)
optic 2(1) 1(0) 1(0) 3(1) 2(0) 2(0) 11(2)

Table 8: Score: number of domains where each approach obtains the highest score. Numbers in parentheses show results
obtained by the configuration with the best overall score for each technique (baselineb f ws, compiledb f ws, rpldb f ws, katz-
satblind , mips-xxlnon−guided and optic f actor=1) .

planner util = 1 1 ≤ util ≤ 10 total
25% 50% 75% 25% 50% 75%

baseline 1(0) 1(0) 2(2) 1(0) 4(3) 3(3) 12(8)
compiled 3(2) 2(1) 1(1) 3(2) 1(1) 0(0) 10(7)
rpld 10(4) 9(7) 8(6) 7(5) 5(2) 6(3) 45(27)
katz-sat 3(3) 1(1) 2(2) 4(4) 3(3) 2(2) 15(15)
mips-xxl 1(1) 1(1) 0(0) 2(2) 1(1) 0(0) 5(5)
optic 2(1) 1(0) 1(0) 4(2) 2(0) 3(0) 13(3)

Table 9: Utility: number of domains where each approach obtains the highest utility. Numbers in parentheses show
results obtained by the configuration with the best overall utility for each technique.

rpld obtains its best results in Elevators, NoMystery, Openstacks and Transport. Interest-
ingly, in the first three domains the selected goals sets are usually not too oversubscribed, as
shown by Table 5, while Transport is one of the domains where our approach generates worse
estimations of the achievable sets. The good performance of our approach in this last domain is
probably due to a bad performance of its competitors, more than to its own merits.

The worst performance of rpld is in Scanalyzer, where it is unable to ground the problems.
It also obtains a bad performance in Visitall, where distances cannot be computed due to the
high number of goals. Barman is mostly dominated by the compiled versions. In Floortile, both
rpld and optic obtain the best results, with a small advantage for the former. There is also a tie
between those two approaches in ParcPrinter, with rpld getting the best results when all goals
have the same utility and optic when utilities vary. In PegSolitaire, compiled, mips-xxl and optic

31

obtain similar results, although rpld is also competitive. Scanalyzer is dominated by optic, while
compiled’s performance is close. In Sokoban and Tidybot the low number of goals makes baseline
a good competitor, but rpld also obtains good results, particularly in the latter domain. optic is
not able to solve any Tidybot problem as the domain includes negative preconditions. compiled
is also the best performer in Visitall, but optic obtains good results in utility. Finally, compiled
and rpld obtain similar results in Woodworking.

As expected optimal obtains poor results in general. The problems we use belong to the
satisficing track of the IPC and are in general too difficult to be solved optimally. To better
compare how far from optimal our approach is, we have conducted a second set of experiments
with optimal domains, using the ones created by Katz et al. [4]. They give a utility of 10 to
original goals of the problem and a random value between 1 and 5 to 5% of the facts of the
problem. In addition of working with bounds of 25%-75%, they also have problems with 100%
of the cost. We have used the four configurations of optimal to search for optimal plans in those
domains. Table 10 shows in how many of the problems for which an optimal solution is known
our approach finds the optimal solution too (opt. column). It also shows its percentage of the
optimal quality score (score column) considering only those problems, computed as described in
Section 5.3. For example, our approach optimally solves 12 out of the 16 problems for which an
optimal solution could be computed in barman 25%. Considering those 16 problems, the score
of our approach is 96% of the optimal one. The quality score is very often close to the optimal
one, and our approach solves many problems optimally or near optimally in most domains.

25% 50% 75% 100%
Domain opt. score opt. score opt. score opt. score
barman 12/16 96% 6/8 98% 4/8 92% 0/8 88%
elevators 20/20 100% 18/19 100% 15/19 97% 9/17 94%
floortile 6/9 98% 3/6 95% 2/4 97% 2/2 100%
nomystery 15/18 91% 11/16 95% 9/10 99% 9/9 100%
openstacks 18/20 98% 15/20 96% 10/17 89% 11/17 87%
parcprinter 10/14 99% 6/9 97% 6/9 98% 8/8 100%
parking 5/12 92% 0/3 83% 0/1 90% 0/0 0%
pegsol 4/20 92% 4/20 93% 5/19 96% 16/18 99%
scanalyzer 9/12 88% 9/9 100% 7/9 98% 5/9 96%
sokoban 19/20 99% 14/20 97% 14/20 97% 10/19 95%
tidybot 20/20 100% 17/20 99% 10/19 91% 9/14 92%
transport 9/14 96% 10/11 99% 8/11 96% 4/8 93%
visitall 9/17 98% 9/12 99% 8/9 99% 8/9 99%
woodworking 7/19 85% 2/11 87% 3/6 98% 3/4 99%

Table 10: Results on the optimal versions of the domains as defined in [4]. For each oversubscription degree the first
column shows the number of problems for which an optimal solution is known and how many of them we solved
optimally. The second column shows the percentage of the optimal score we obtain.

7. Conclusions and Future Work

In this paper we have presented rpld, a planner-independent technique to solve satisficing
OSP problems. To our knowledge it is the only off-the-shelf approach currently available for
suboptimal OSP. It is based on selecting a subset of all the goals by estimating the cost of achiev-
ing them by means of distances computed using relaxed plans. We have tested our approach with

32

three planners, cbp2, bfws and bfs(f), in fourteen domains, with three oversubscription degrees,
and two utility profiles. As there are no other freely available planners tailored for the subopti-
mal OSP problem, we have compared our approach against two planners supporting soft-goals
(mips-xxl and optic), a greedy selecting-goals baseline, four different configurations of an OSP
optimal planner, which has also been modified to generate non-optimal plans, and an adaptation
of Keyder&Geffner’s compilation for net-benefit problems. Results show that our approach ob-
tains the overall best scores for all levels of oversubscription and utility profiles. Considering the
winners for each domain, our rpld approach obtains the highest score in 42 out of the 84 con-
figurations of domain, utility profile and oversubscription degree, which raises to 45 out of 84 in
the case of utility. In contrast, the remaining approaches obtain better results than our approach
in a maximum of 15 configurations. Testing on smaller problems, where it is easier to compute
optimal plans, our approach finds plans that are very close to the optimal ones in most cases.

The time to compute the distances depends on the number of goals, as |goals|2 relaxed plans
have to be created, but also on the domain. Differences of up to one order of magnitude can
be observed among domains having similar number of goals. Also, the structure of problems
is relevant, with similar problems of the same domain having huge differences on computation
time. A simple improvement to our approach would be to compute distances as needed, instead
of pre-computing them at start. This would increase our performance in domains with a large
number of goals, where most of the time is spent in computing distances which will not be used
in the selection process. It will also allow us to tackle domains with hundreds of goals like
Visitall. Reusing part of the effort done to create the relaxed plans instead of starting every time
from scratch could also reduce the time spent computing distances.

Once distances are computed, selecting goals is done by using a DFBnB algorithm driven by
utility. This makes selection very fast and also reduces the number of selected goals compared
to a less greedy search. The experimental results show that the generated set seems to be still
oversubscribed in many cases. From the results obtained from rpld f irst, our non-incremental
approach, the selection process is slightly more accurate when goals have the same utility. In
such setting, distances are used both to estimate how many goals can be selected under the cost-
bound, and also which goals seem to be closer in terms of cost; a measure of how interrelated
they are. Selecting those interrelated goals produces good results and increases the quality of
the first plan found. In contrast, when goals have different utilities, distances are only used to
select the highest-utility goals. This is done until we estimate the cost bound has been reached,
ignoring lower utility goals that seem to be closer to the already selected ones. This seems to
ignore dependencies among goals, producing slightly worse first plans, which are nevertheless
improved thanks to the incremental behavior. In the future we want to explore ways to bias the
search taking into account also the cost. When a high utility goal is selected, lower utility goals
which seem to be close to it should have chances to be selected too.

In some problems the algorithms that select goals (select-goals-and-plan and enforced-
select-goals-and-plan) are able to explore all the search space and finish before the timeout.
A possible improvement in those cases is to start again, revisiting discarded sets of goals and
increasing the time alloted to invoke-planner to find a plan for them.

We also plan to test our approach in problems having both hard and soft-goals. The extension
is quite straightforward by forcing all hard goals to be included in the selected goals set and by
making sure that none of them is removed during backtracking if a plan is not found. We also
want to tackle net-benefit problems and in the long term temporal domains or domains with
several limiting resources.

33

Using other heuristics, or even a combination of them, to compute the distances is an alter-
native we also want to explore in the future. An easy way to improve the results is to follow the
current trends in planning and use a portfolio instead of a single planner once goals are selected.
Actually, the combination of cbp2 and bfws seems to be a good starting point.

A totally different approach we want to explore is to use techniques similar to those of the
ibacop [44] planner; trying to predict if the planner will find a solution for a given set of goals.
This can be done once the goals have been selected, not even trying to search for a plan if the
prediction says we will not find it, or we can take into account the prediction when selecting
goals in order to add or not a new goal to the selected ones.

Finally, as we are performing several searches for a single problem, we want to exploit this
information to refine the values of the computed distances. For instance, we would like to com-
pare their estimated values with the ones found in intermediate plans or to adjust the plan search
time for each domain using this information. Also, inspired by the idea of the goal agenda [45],
we could bias the planner to follow the order in which goals have been selected.

Acknowledgements

This work has been partially funded by the European Union ECHORD++ project (FP7-ICT-
601116), by FEDER/Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de
Investigación TIN2017-88476-C2-2-R, RTC-2016-5407-4 and RTI2018-099522-B-C43 projects
and the ESA GOTCHA project (4000117648/16/NL/GLC/fk). We would like to thank Michael
Katz, Daniel Muller and Nir Lipovetzky for supporting us in using their planners and the review-
ers for their helpful comments.

References

[1] D. Smith, Choosing objectives in over-subscription planning, in: Proceedings of the 14th International Conference
on Automated Planning and Scheduling, 2004, pp. 393–401.

[2] C. Domshlak, V. Mirkis, Deterministic Oversubscription Planning as Heuristic Search : Abstractions and Refor-
mulations, Journal of Artificial Intelligence Research 52 (2015) 97–169. doi:http://dx.doi.org/10.1613/

jair.4443.
[3] M. Katz, V. Mirkis, In Search of tractability for partial satisfaction planning, in: Twenty-Fifth International Joint

Conference on Artificial Intelligence (IJCAI-16), 2016, pp. 3154–3160.
[4] M. Katz, E. Keyder, D. Winterer, F. Pommerening, Oversubscription Planning as Classical Planning with Multiple

Cost Functions, in: International Conference on Automated Planning and Scheduling, 2019, pp. 237–245.
URL https://aaai.org/ojs/index.php/ICAPS/article/view/3482/3350

[5] D. Muller, E. Karpas, Value Driven Landmarks for Oversubscription Planning, in: International Conference on
Automated Planning and Scheduling, Delft, The Netherlands, 2018, pp. 171–179.

[6] J. Ocón, J. M. Delfa, T. De La Rosa Turbides, A. Garcia-Olaya, Y. Escudero Martı́n, In-orbit autonomous as-
sembly of large structures and habitats for planetary explorations using planning and scheduling techniques, in:
Proceedings of the International Astronautical Congress, IAC, Vol. 4, 2017, pp. 2697–2703.

[7] J. Garcı́a, Á. Torralba, J. E. Flórez, D. Borrajo, C. Linares López, A. Garcia-Olaya, TIMIPLAN: A Tool for
Transportation Tasks, Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-25808-9.
URL http://link.springer.com/10.1007/978-3-319-25808-9

[8] J. Hoffmann, The Metric-FF planning system: Translating “ignoring delete lists” to numeric state variables, Journal
of Artificial Intelligence Research 20 (2003) 291–341.

[9] M. Fox, D. Long, PDDL2.1: an Extension to PDDL for Expressing Temporal Planning Domains, Journal of Arti-
ficial Intelligence Research (JAIR) 20 (1) (2003) 61–124.

[10] A. Garcı́a-Olaya, T. de la Rosa, D. Borrajo, Using the Relaxed Plan Heuristic to Select Goals in Oversubscrip-
tion Planning Problems, in: J. Lozano, J. Gómez, J. Moreno (Eds.), Advances in Artificial Intelligence, Vol.
7023 of Lecture Notes in Computer Science, Springer Berlin-Heidelberg, 2011, pp. 183–192. doi:10.1007/

978-3-642-25274-7_19.
34

http://dx.doi.org/http://dx.doi.org/10.1613/jair.4443
http://dx.doi.org/http://dx.doi.org/10.1613/jair.4443
https://aaai.org/ojs/index.php/ICAPS/article/view/3482/3350
https://aaai.org/ojs/index.php/ICAPS/article/view/3482/3350
https://aaai.org/ojs/index.php/ICAPS/article/view/3482/3350
http://link.springer.com/10.1007/978-3-319-25808-9
http://link.springer.com/10.1007/978-3-319-25808-9
http://dx.doi.org/10.1007/978-3-319-25808-9
http://link.springer.com/10.1007/978-3-319-25808-9
http://dx.doi.org/10.1007/978-3-642-25274-7_19
http://dx.doi.org/10.1007/978-3-642-25274-7_19

[11] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins, PDDL - The
Planning Domain Definition Language, Tech. Rep. CVC TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control (1998).

[12] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Deterministic planning in the fifth international
planning competition: PDDL3 and experimental evaluation of the planners, Artificial Intelligence 173 (5-6) (2009)
619–68. doi:10.1016/j.artint.2008.10.012.

[13] M. B. Do, J. Benton, M. van den Briel, S. Kambhampati, Planning with goal utility dependencies, in: Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India, 2007, pp. 1872–
1878.

[14] A. Gerevini, A. Saetti, I. Serina, An approach to efficient planning with numerical fluents and multi-criteria plan
quality, Artificial Intelligence 172(8-9) (2008) 899–944.

[15] J. Hoffmann, H. Kautz, C. Gomes, B. Selman, SAT encodings of state-space reachability problems in numeric
domains, in: M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI-07), Morgan Kaufmann, Hyderabad, India, 2007, pp. 1918–1923.

[16] H. Nakhost, J. Hoffmann, M. Mueller, Resource-constrained planning: A Monte Carlo random walk approach,
in: International Conference on Automated Planning and Scheduling (ICAPS-12), Sao Paulo, Brazil, 2012, pp.
181–189.

[17] J. A. Baier, S. A. McIlraith, Planning with preferences, AI Magazine 29 (4) (2008) 25–36.
[18] M. van den Briel, R. Sanchez, M. B. Do, S. Kambhampati, Effective approaches for partial satisfaction (over-

subscription) planning, in: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04),
2004, pp. 562–569.

[19] J. Benton, M. Do, S. Kambhampati, Anytime heuristic search for partial satisfaction planning, Artificial Intelligence
173 (2009) 562–592.

[20] S. Edelkamp, S. Jabbar, Mips-xxl: Featuring external shortest path search for sequential optimal plans and external
branch-and-bound for optimal net benefit, in: Proc. 2008 International Planning Competition, Sydney, Australia,
2008.

[21] S. Edelkamp, P. Kissmann, Gamer: Bridging planning and general game playing with symbolic search, in: Proc.
2008 International Planning Competition, Sydney, Australia, 2008.

[22] P. Haslum, Additive and reversed relaxed reachability heuristics revisited, in: Proc. 2008 International Planning
Competition, Sydney, Australia, 2008.

[23] R. Sanchez-Nigenda, S. Kambhampati, Planning graph heuristics for selecting objectives in over-subscription plan-
ning problems, in: Proceedings of the 15th Intl. Conf. on Automated Planning and Scheduling (ICAPS-05), 2005,
pp. 192–201.

[24] M. Helmert, C. Domshlak, Landmarks, Critical Paths and Abstractions: What’s the Difference Anyway?, in: Pro-
ceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS), 2009, pp. 162–169.

[25] J. Benton, A. Coles, A. Coles, Temporal Planning with Preferences and Time-Dependent Continuous Costs, in:
Proceedings of the 22nd International Conference on Automated Planning and Scheduling, 2012, pp. 2–10.

[26] J. A. Baier, F. Bacchus, S. A. McIlraith, A heuristic search approach to planning with temporally extended prefer-
ences, Artificial Intelligence 173 (5-6) (2009) 593–618.

[27] E. Keyder, H. Geffner, Soft goals can be compiled away, Journal of Artificial Intelligence Research 36 (2009)
547–556.

[28] S. Ritcher, M. Westphal, The lama planner: Guiding cost-based anytime planning with landmarks, Journal of
Artificial Intelligence Research 39 (2010) 127–177.

[29] M. Helmert, P. Haslum, J. Hoffmann, R. Nissim, Merge-and-shrink abstraction: A method for generating lower
bounds in factored state spaces, J. ACM 61 (3). doi:10.1145/2559951.
URL https://doi.org/10.1145/2559951

[30] M. Katz, E. Keyder, A* Search and Bound-Sensitive Heuristics for Oversubscription Planning, in: Proceedings of
the 11th Workshop on Heuristics and Search for Domain-independent Planning (HSDIP), 2019, pp. 81–88.

[31] W. Zhang, Depth-first branch-and-bound versus local search: A case study, in: AAAI/IAAI, 2000, pp. 930–935.
[32] J. Hoffman, B. Nebel, The FF planning system: Fast plan generation through heuristic search, Journal of Artificial

Intelligence Research 14 (2001) 253–302.
[33] T. de la Rosa, A. Garcı́a-Olaya, D. Borrajo, A case-based approach to heuristic planning, Applied Intelligence

39 (1) (2013) 184–201. doi:10.1007/s10489-012-0404-6.
[34] R. Howey, D. Long, M. Fox, VAL: Automatic plan validation, continuous effects and mixed initiative planning

using PDDL, in: The Sixteenth IEEE International Conference on Tools with Artificial Intelligence (ICTAI-04),
Boca Raton (Florida), United States, 2004, pp. 294–301.

[35] A. Torralba, F. Pommerening, Planner abstracts for the classical tracks in the international planning competition
2018, Tech. rep. (2018).

35

http://dx.doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1145/2559951
https://doi.org/10.1145/2559951
http://dx.doi.org/10.1145/2559951
https://doi.org/10.1145/2559951
http://dx.doi.org/10.1007/s10489-012-0404-6

[36] N. Lipovetzky, H. Geffner, Best-first width search: Exploration and exploitation in classical planning, in: AAAI
Conference on Artificial Intelligence, 2017, pp. 3590–3596.
URL https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14862/14161

[37] M. Vallati, L. Chrpa, T. L. McCluskey, The 2014 International Planning Competition Description of Participating
Planners. Deterministic Track, Tech. rep. (2014).

[38] A. Garcı́a-Olaya, S. Jiménez, C. Linares López, The 2011 international planning competition, Tech. rep. (June
2011).
URL http://hdl.handle.net/10016/11710

[39] N. Lipovetzky, H. Geffner, Width and serialization of classical planning problems, in: Frontiers in Artificial Intel-
ligence and Applications, Vol. 242, IOS Press, 2012, pp. 540–545. doi:10.3233/978-1-61499-098-7-540.

[40] R. Fuentetaja, D. Borrajo, C. Linares, A look-ahead B & B search for cost-based planning, in: Proceedings of the
Thirteenth Conference of the Spanish Association for Artificial Intelligence (CAEPIA-09), Sevilla, Spain, 2009,
pp. 105–114.

[41] I. Refanidis, I. Vlahavas, Multiobjective heuristic state-space planning, Artificial Intelligence 145 (1-2) (2003)
1–32. doi:10.1016/S0004-3702(02)00371-5.

[42] C. Linares López, S. Jiménez Celorrio, Á. Garcı́a Olaya, The deterministic part of the seventh International Plan-
ning Competition, Artificial Intelligence 223 (2015) 82–119. doi:10.1016/j.artint.2015.01.004.

[43] M. Roberts, A. Howe, Learning from planner performance, Artificial Intelligence 173 (5-6) (2009) 536–561. doi:
10.1016/j.artint.2008.11.009.

[44] I. Cenamor, T. de la Rosa, F. Fernández, The ibacop planning system: Instance-based configured portfolios, Journal
of Artificial Intelligence Research (JAIR) 56 (2016) 657–691. doi:10.1613/jair.5080.

[45] J. Koehler, J. Hoffmann, On reasonable and forced goal orderings and their use in an agenda-driven planning
algorithm, Journal of Artificial Intelligence Research 12 (2000) 338–386.

36

https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14862/14161
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14862/14161
http://hdl.handle.net/10016/11710
http://hdl.handle.net/10016/11710
http://dx.doi.org/10.3233/978-1-61499-098-7-540
http://dx.doi.org/10.1016/S0004-3702(02)00371-5
http://dx.doi.org/10.1016/j.artint.2015.01.004
http://dx.doi.org/10.1016/j.artint.2008.11.009
http://dx.doi.org/10.1016/j.artint.2008.11.009
http://dx.doi.org/10.1613/jair.5080

	Introduction
	Background
	Related work
	Algorithm
	Distances between goals
	Goals selection
	Analysis of the Goal Selection Algorithm

	Experimental Setup
	Planners
	Domains and Problems Description
	Plan quality metrics
	Selection of parameters

	Experimental Results
	Distances Computation
	Goals selection
	Scores: quality and utility of the plans

	Conclusions and Future Work

