Publication:
Exploring OpenMP Accelerator Model in a real-life scientific application using hybrid CPU-MIC platforms

dc.affiliation.dptoUC3M. Departamento de Informáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Arquitectura de Computadores, Comunicaciones y Sistemases
dc.contributor.authorHalbiniak, Kamil
dc.contributor.authorSzustak, Lukasz
dc.contributor.authorLastovetsky, Alexey
dc.contributor.authorWyrzykowski, Roman
dc.contributor.editorCarretero Pérez, Jesús
dc.contributor.editorGarcía Blas, Javier
dc.contributor.editorMargenov, Svetozar
dc.contributor.otherUniversidad Carlos III de Madrid. Computer Architecture, Communications and Systems Group (ARCOS)en
dc.date.accessioned2017-02-17T11:41:52Z
dc.date.available2017-02-17T11:41:52Z
dc.date.issued2016-12
dc.descriptionProceedings of: Third International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2016). Sofia (Bulgaria), October, 6-7, 2016.en
dc.description.abstractThe main goal of this paper is the suitability assessment of the OpenMP Accelerator Model (OMPAM) for porting a real-life scientific application to heterogeneous platforms containing a single Intel Xeon Phi coprocessor. This OpenMP extension is supported from version 4.0 of the standard, offering an unified directive-based programming model dedicated for massively parallel accelerators. In our study, we focus on applying the OMPAM extension together with the OpenMP tasks for a parallel application which implements the numerical model of alloy solidification. To map the application efficiently on target hybrid platforms using such constructs as omp target, omp target data and omp target update, we propose a decomposition of main tasks belonging to the computational core of the studied application. In consequence, the coprocessor is used to execute the major parallel workloads, while CPUs are responsible for executing a part of the application that do not require massively parallel resources. Effective overlapping computations with data transfers is another goal achieved in this way. The proposed approach allows us to execute the whole application 3.5 times faster than the original parallel version running on two CPUs.en
dc.description.sponsorshipThis research was conducted with the support of COST Action IC1305 (NESUS), as well as the National Science Centre (Poland) under grant no. UMO-2011/03/B/ST6/03500. The authors are grateful to the Czestochowa University of Technology for granting access to Intel Xeon Phi coprocessors provided by the MICLAB project no. POIG.02.03.00.24-093/13 (http://miclab.pl).en
dc.format.extent4
dc.format.mimetypeapplication/pdf
dc.identifier.bibliographicCitationCarretero Pérez, Jesús; et.al. (eds.). (2016) Proceedings of the Third International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2016): Sofia, Bulgaria. Universidad Carlos III de Madrid, pp. 11-14en
dc.identifier.isbn978-84-617-7450-0
dc.identifier.publicationfirstpage11
dc.identifier.publicationlastpage14
dc.identifier.publicationtitleProceedings of the Third International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2016): Sofia, Bulgariaen
dc.identifier.urihttps://hdl.handle.net/10016/24224
dc.language.isoeng
dc.relation.eventdateOctober, 6-7, 2016en
dc.relation.eventnumber3
dc.relation.eventplaceSofia, Bulgariaes
dc.relation.eventtitleInternational Workshop on Sustainable Ultrascale Computing Systems (NESUS 2016)en
dc.relation.ispartofhttp://hdl.handle.net/10016/24228
dc.rights.accessRightsopen access
dc.subject.ecienciaInformáticaes
dc.subject.otherIntel MICen
dc.subject.otherHybrid architectureen
dc.subject.otherNumerical modeling of solidificationen
dc.subject.otherHeterogeneous programmingen
dc.subject.otherOpenMP Accelerator Modelen
dc.subject.otherTask and data parallelismen
dc.titleExploring OpenMP Accelerator Model in a real-life scientific application using hybrid CPU-MIC platformsen
dc.typeconference paper*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
exploring_NESUS_2016.pdf
Size:
585.51 KB
Format:
Adobe Portable Document Format
Description: