
Proceedings of the Third International Workshop on Sustainable

Ultrascale Computing Systems (NESUS 2016)

Sofia, Bulgaria

Jesus Carretero, Javier Garcia Blas, Svetozar Margenov
(Editors)

October, 6-7, 2016

Halbiniak, K., Szustak, L., Lastovetsky, A. & Wyrzykowski, R. (2016).
Exploring OpenMP Accelerator Model in a real-life scientific

application using hybrid CPU-MIC platforms. En Proceedings of the
Third International Workshop on Sustainable Ultrascale Computing

Systems (NESUS 2016) Sofia, Bulgaria (pp. 11-14). Madrid:
Universidad Carlos III de Madrid. Computer Architecture,

Communications, and Systems Group (ARCOS).

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Exploring OpenMP Accelerator Model in
a real-life scientific application using hybrid

CPU-MIC platforms
Kamil Halbiniak*, Lukasz Szustak*, Alexey Lastovetsky** and Roman Wyrzykowski*

* Czestochowa University of Technology, Poland
{khalbiniak, lszustak, roman}@icis.pcz.pl

** University College Dublin, Ireland
alexey.lastovetsky@ucd.ie

Abstract

The main goal of this paper is the suitability assessment of the OpenMP Accelerator Model (OMPAM) for porting a real-life
scientific application to heterogeneous platforms containing a single Intel Xeon Phi coprocessor. This OpenMP extension is
supported from version 4.0 of the standard, offering an unified directive-based programming model dedicated for massively
parallel accelerators. In our study, we focus on applying the OMPAM extension together with the OpenMP tasks for a parallel
application which implements the numerical model of alloy solidification. To map the application efficiently on target hybrid
platforms using such constructs as omp target, omp target data and omp target update, we propose a decomposition of main
tasks belonging to the computational core of the studied application. In consequence, the coprocessor is used to execute the major
parallel workloads, while CPUs are responsible for executing a part of the application that do not require massively parallel
resources. Effective overlapping computations with data transfers is another goal achieved in this way. The proposed approach
allows us to execute the whole application 3.5 times faster than the original parallel version running on two CPUs.

Keywords Intel MIC, hybrid architecture, numerical modeling of solidification, heterogeneous programming, OpenMP
Accelerator Model, task and data parallelism

I. Introduction

Heterogeneous platforms combining general-purpose pro-
cessors with specialized computing accelerators (e.g., GPU
or Intel Xeon Phi) offer ample opportunities for accelerating
a wide range of applications [1]. However, realizing these
performance potentials remains a challenging issue.

A promising way to exploit capabilities of heterogeneous
platforms is the OpenMP Accelerator Model [2] offered by
the OpenMP standard, starting with version 4.0. It provides
an unified directive-based programming model encompass-
ing both CPUs and accelerators. The major advantage of
this extension is applying the same programming model
for the whole application, that allows decreasing the code
complexity and increasing its portability.

The main goal of this paper is evaluation of the OpenMP
Accelerator Model for porting a real-life scientific application
to platforms equipped with a single Intel Xeon Phi copro-
cessor. In this study, we focus on the effective utilization
of new mechanisms provided by the OpenMP 4.0 standard

for parallelization of the computational core of the studied
application. The proposed approach allows us to execute
computations 3.49x faster than the original parallel code that
uses two CPUs. This application was already studied in our
previous work [3], where we developed a methodology that
utilized the dedicated Intel Offload interface.

This paper is organized as follows. Section 2 gives an
overview of the OpenMP Accelerator Model, while Section
3 introduces the numerical model of solidification, which is
based on the generalized finite difference method. The next
section describes the idea of parallelizing the solidification
application on hybrid platforms with OpenMP 4.0 mecha-
nisms, while Section 5 shows performance results achieved
by the proposed approach. Section 6 concludes the paper.

II. Overview of OpenMP Accelerator Model

OpenMP is the directive-based programming standard de-
signed for programming shared-memory systems. [2]. Start-
ing with version 4.0, OpenMP provides a mechanism called

1

Lukasz Szustak, Kamil Halbiniak, Roman Wyrzykowski, Alexey Lastovetsky 11

OpenMP Accelerator Model (OMPAM in short). It aims at
simplifying the issue of programming heterogeneous com-
puting platforms with many-core accelerators such as Intel
MIC or GPU. This model assumes that a computing platform
is equipped with multiple target devices connected to the
host device.

The execution model of OMPAM is based on a host-centric
view, where the host device transfers (offloads) data and
computations to target devices before execution, using target
construct. By default, code regions offloaded to accelerators
are executed using a single thread, that can spawn multiple
threads after encountering an appropriate parallel construct.

Using accelerators requires usually to perform data trans-
fers. To reduce the total amount of allocations and dealloca-
tions of device memory, OMPOA provides target data con-
struct, which creates the data region for a device. This gives
the possibility for sharing the same data between multiple
target regions. OMPAM allows defining the data movements
between the host and the device before and after the exe-
cution of the offloaded region by using map clause. The
transfers of data are possible using the following attributes:
to, from and tofrom. These attributes allows the implicit
initialization of device buffers and determination of the di-
rection of data copying [2]. At the same time, map clause
with alloc attribute is used when the explicit allocation of
device memory is required.

Another important directive of OMPAM is target udpate.
It allows the synchronization of buffers between the host and
device environments. This construct can be used only inside
the device data region. The direction of update is specified
using two clauses: to and from, which provide the list of
synchronized buffers consistent with variables in the device
data region. Another new directive, declare target, is used to
determine regions of the source code mapped to the device,
with the resulting binaries called from the target region.

An example of source code written using the OpenMP
Accelerator Model is shown in Listing 1.

#pragma omp t a r g e t data map(to : n , B [0 : n]) \
map(a l l o c : A[0 : n] , C[0 : n])

f o r (i n t t =0; t <num_steps ; ++ t) {
#pragma omp t a r g e t map(to : n , B [0 : n]) \

map(to : C[0 : n]) map(from : A[0 : n])
#pragma omp p a r a l l e l f o r
f o r (i n t i =1 ; i <n−1; ++ i) {

A[i]=C[i] ∗ (B [i −1] + B [i] + B [i + 1]) ;
}
// r e s t of code

}

Listing 1: Offloading computations in OpenMP Accelerator Model

Comparing to alternative tools that allow for programming
accelerators, OMPAM provides a reasonable support for mul-
tiple heterogeneous platforms, through a growing amount of
compilers. This increases the interest of developers in using
OpenMP as a promising way to achieve the code portability
between platforms.

III. Application: Modeling Solidification

The phase-field method is a powerful tool for solving interfa-
cial problems in materials science. It has mainly been applied
to solidification dynamics, but it has also been used for other
phenomena such as viscous fingering, and fracture dynamics.
The number of scientific papers related to the phase-field
method grows since the 90 years of XX century, reaching for
the last 7 years more than 400 positions (according to the
SCOPUS database) [4].

In the numerical example studied in this paper, a binary
alloy of Ni-Cu is considered as a system of the ideal metal
mixture in the liquid and solid phases. The numerical model
refers to the dendritic solidification process in the isother-
mal conditions with constant diffusivity coefficients for both
phases. In the model, the growth of microstructure during
the solidification is determined by solving a system of two
PDEs which define the phase content φ (Fig. 1) and concen-
tration c of the alloy dopant. The solutions of these PDEs
are obtained on the basis of the generalized finite difference
method and explicit scheme of calculations, so the resulting
numerical algorithm [3] belongs to the group of forward-in-
time iterative algorithms. In the model studied in the paper,
values of φ and c are calculated for grid nodes uniformly
distributed across a square domain. However, this model
can be also used for irregular grids.

Figure 1: Phase content for the simulated time t = 2.75 × 10−3s

2

12 Exploring OpenMP Accelerator Model in a real-life scientific application using hybrid CPU-MIC platforms

IV. Parallelization of the Application on
Hybrid CPU-MIC Platforms

IV.1 Task Parallelization with OpenMP 4.0

In the studied application, computation are interleaved with
writing partial results to a file. In the basic version (Fig.2a),
parallel computations are executed for subsequent time steps,
and writing results to the file is performed after the first time
step, and then after every package of R = 2000 time steps.

parallel computations

writing outcomes to the �le

transfer of input data to Phi

transfer of output data from Phi

a)

timesteps

Phi

CPU

0 1 1999 2000 3999

b)

timesteps

1 1999 2000 39990
CPU

Figure 2: Adapting the application to platforms with Intel MIC [3]

In the proposed approach (Fig. 2b), the Intel Xeon Phi co-
processor is utilized to perform parallel computations, while
the host processor is responsible for executing the rest of the
application that not required massively parallel resources. As
a result, writing outcomes to the file is assigned to the CPU,
while the coprocessor is utilized for parallel computations in
subsequent time steps. At the beginning, all the input data
are transferred from the CPU to the coprocessor, which then
starts computations for the first time step. After finishing
it, all the results are transferred back to the CPU. During
this transfer, the coprocessor starts computations for the next
package of R time steps. At the same time, CPU begins writ-
ing results to the file, immediately after receiving outcomes
from the coprocessor. Such a scheme is repeated for every
package of R time steps. A critical performance challenge
here is to overlap workload performed by the coprocessor
with data movements. To reach this goal, data transfers be-
tween the CPU and coprocessor, writing data to the file, as
well as computations have to be performed simultaneously.

To offload data and computations to the coprocessor, we
use two major constructs of OMPAM: omp target data and
omp target. By default, OpenMP 4.0 does not provide a
mechanism for the asynchronous execution of omp target
region. In consequence, the thread calling this pragma is
stopped before completing the execution by the accelerator.
Therefore to ensure overlapping computations with writing
outcomes to the file, we propose to use the OpenMP task

parallelism. This mechanism can be successfully applied
to parallelize these operations. As a result, two tasks are
distinguished in the proposed approach: (i) running parallel
computations on the coprocessor, and (ii) writing results to
the file. These tasks are spawned inside the parallel region
by the master thread using omp task construct.

When applying the proposed idea of adapting the solidifi-
cation application to heterogeneous platforms (Fig. 2b), the
usage of task parallelism requires to provide an adequate
task synchronisation, since results cannot be written to the
file before completing computations for the previous package
of R time steps. Therefore, the synchronization points occur
after every package. To ensure the effective synchronization
of tasks, we use omp taskwait pragma.

Overlapping data transfers with computations requires
also to apply the double-buffering technique. The first buffer
is utilized for performing parallel computations, while the
second one is for providing data movements and writing
outcomes to the file. To transfer data from the coprocessor
to CPU during computations, omp target update construct
is adopted.

IV.2 Data Parallelization

The original CPU version of the application uses the OpenMP
standard to utilize cores/threads, based on the OpenMP con-
struction #pragma omp parallel for. Since the Intel Xeon
Phi coprocessors supports OpenMP, the application code can
be rather easily ported to this platform. To ensure the best
overall performance without significant modifications in the
source code, we use several compiler-friendly optimizations,
empirically determine the best OpenMP setup for the loop
scheduling and set appropriate affinity.

The utilization of vector processing is crucial for ensuring
the best performance on Intel Xeon Phi. The quickest way to
achieve this goal is the compiler-based automatic vectoriza-
tion. However, in the studied case the innermost loop cannot
be vectorized safely, mainly because of data dependencies.
To solve this problem, we propose to change slightly the code
by adding temporary vectors responsible for loading data
from the irregular memory region, and than providing SIMD
computations (see our previous works [3, 5]).

V. Performance Results

In this work, we use a platform equipped with two
Intel Xeon E5-2699 v3 CPUs (Haswell-EP), and Intel
Xeon Phi 7120P coprocessor (Knight Corner). All the tests
are performed for the double-precision floating-point format
with 110 000 time steps, and 2D grid containing 4 000 000

3

Lukasz Szustak, Kamil Halbiniak, Roman Wyrzykowski, Alexey Lastovetsky 13

Table 1: Performance results for different versions of the application

Tasks
Version Data Parallel Time Speedup

writing computing

original CPU CPU
641 min

-
32 sec

offload CPU MIC
183 min

3.49x
41 sec

OpenMP CPU MIC
187 min

3.42x
43 sec

nodes (2000 nodes along each dimension), using the Intel
icpc compiler (v.15.0.2) with optimization flag -O3.

Table 1 presents the comparison of the performance for:
(i) original CPU parallel version of the application running
on two CPUs with 18 cores each, (ii) offload-based code
for hybrid CPU-MIC platforms, developed in our previous
work [3], and (iii) the proposed version developed in this
work using OpenMP 4.0 mechanisms. Both the second and
third versions implement the proposed scheme of adapting
the solidification application to platforms with a single Intel
Xeon Phi coprocessor.

The total execution time of the original code is the sum
of the execution times necessary for performing parallel
computations and writing partial results to the file. The
proposed approach allows us to hide more than 99% of data
movements behind computations, for both the offload- and
OpenMP-based versions, and finally accelerate the whole
application of about 3.5x. Comparing the execution times
for the OpenMP- and offload-based codes, we can see a very
low difference of 2.2% in favour of the offload interface.

VI. Conclusion and Future Works

This paper shows that the OpenMP Accelerator Model is the
promising tool for porting a real-life scientific application to
heterogeneous platforms with many-core accelerators such
as Intel Xeon Phi. The performance results obtained for
the offload-based and OpenMP-based versions, executed on
the platform with a single coprocessor, confirms that the
OpenMP Accelerator Model allows achieving a quite similar
performance as the Intel Offload Model dedicated directly
for Intel MIC architectures. It is expected that the potential
of using OpenMP for current and future architectures will
be manifested for a wide range of applications.

The primary direction of our future work is to take ad-
vantage of all the computing resources (multiple CPUs and
multiple MICs) of heterogeneous platforms, for executing

the application. The OpenMP Accelerator Model will be
compared against the offload-based [5] and hStreams-based
[6, 7] solutions, taking into account both the performance
and productivity. We plan to explore new features avail-
able in version 4.5 of OpenMP [8], since version 4.0 does
not provides the asynchronous offload mechanisms, which
are necessary for the efficient utilization of all the resources
available in such multi-device heterogeneous platforms.

Acknowledgments

This research was conducted with the support of COST Ac-
tion IC1305 (NESUS), as well as the National Science Centre
(Poland) under grant no. UMO-2011/03/B/ST6/03500. The
authors are grateful to the Czestochowa University of Tech-
nology for granting access to Intel Xeon Phi coprocessors pro-
vided by the MICLAB project no. POIG.02.03.00.24-093/13
(http://miclab.pl).

References

[1] L. Szustak, K. Rojek, R. Wyrzykowski, and P. Gepner.
Toward efficient distribution of MPDATA stencil compu-
tation on Intel MIC architecture. In Proc. 1st Int. Workshop
on High-Performance Stencil Computations (HiStencils’ 14),
pages 51–56, 2014.

[2] OpenMP Application Programming Inter-
face. http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf.

[3] L. Szustak, K. Halbiniak, A. Kulawik, J. Wrobel, and
P. Gepner. Toward parallel modeling of solidification
based on the generalized finite difference method using
Intel Xeon Phi. LNCS, 9573:411–412, 2016.

[4] T. Takaki. Phase-field Modeling and Simulations of Den-
drite Growth. ISIJ International, 54 (2):437–444, 2014.

[5] L. Szustak et al. Porting and optimization of solidification
application for CPU-MIC hybrid platforms. Int. Journal of
High Performance Comp. Applications, (accepted to print).

[6] Chris J. Newburn et al. Heterogeneous streaming.
IPDPSW, AsHES, 2016.

[7] L. Szustak et al. Using hStreams Programming Library
for Accelerating a Real-Life Application on Intel MIC. In
ICA3PP 2016 Conference, (accepted to print).

[8] M. Klemm. Heterogeneous Programming with OpenMP
4.5. https://www.scc.kit.edu/downloads/sca /Heteroge-
neous%20Programming%20with%20OpenMP%204.5.pdf.

4

14 Exploring OpenMP Accelerator Model in a real-life scientific application using hybrid CPU-MIC platforms

