Publication: Stability of the volume growth rate under quasi-isometries
dc.affiliation.dpto | UC3M. Departamento de Matemáticas | es |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Análisis Aplicado | es |
dc.contributor.author | Granados, Ana | |
dc.contributor.author | Pestana Galván, Domingo de Guzmán | |
dc.contributor.author | Portilla, Ana | |
dc.contributor.author | Rodríguez García, José Manuel | |
dc.contributor.author | Tourís, Eva | |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) | es |
dc.contributor.funder | Agencia Estatal de Investigación (España) | es |
dc.date.accessioned | 2023-09-11T12:21:50Z | |
dc.date.available | 2023-09-11T12:21:50Z | |
dc.date.issued | 2020-01 | |
dc.description.abstract | Kanai proved powerful results on the stability under quasi-isometries of numerous global properties (including the volume growth rate) between non-bordered Riemannian manifolds of bounded geometry. Since his work focuses more on the generality of the spaces considered than on the two-dimensional geometry, Kanai's hypotheses are not usually satisfied in the context of Riemann surfaces endowed with the Poincaré metric. In this work we try to fill that gap and prove the stability of the volume growth rate by quasi-isometries, under hypotheses that many bordered or non-bordered Riemann surfaces (and even Riemannian surfaces with pinched negative curvature) satisfy. In order to get our results, it is shown that many bordered Riemannian surfaces with pinched negative curvature are bilipschitz equivalent to bordered surfaces with constant negative curvature. | en |
dc.description.sponsorship | Supported in part by two grants from Ministerio de Economía y Competititvidad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2017-90584-REDT), Spain. | en |
dc.format.extent | 40 | |
dc.identifier.bibliographicCitation | Granados, A., Pestana, D., Portilla, A., Rodríguez, J. M., & Tourís, E. (2019). Stability of the volume growth rate under quasi-isometries. Revista Matematica Complutense, 33(1), 231-270. | en |
dc.identifier.doi | https://doi.org/10.1007/s13163-019-00301-6 | |
dc.identifier.issn | 1139-1138 | |
dc.identifier.publicationfirstpage | 231 | |
dc.identifier.publicationissue | 1 | |
dc.identifier.publicationlastpage | 270 | |
dc.identifier.publicationtitle | Revista Matematica Complutense | es |
dc.identifier.publicationvolume | 33 | |
dc.identifier.uri | https://hdl.handle.net/10016/38293 | |
dc.identifier.uxxi | AR/0000025503 | |
dc.language.iso | eng | en |
dc.publisher | Springer Nature | en |
dc.relation.projectID | Gobierno de España. MTM2016-78227-C2-1-P | es |
dc.relation.projectID | Gobierno de España. MTM2017-90584-REDT | es |
dc.rights | © Universidad Complutense de Madrid 2019 | es |
dc.rights.accessRights | open access | en |
dc.subject.eciencia | Matemáticas | es |
dc.subject.other | Negative pinched curvature | en |
dc.subject.other | Poincaré metric | en |
dc.subject.other | Quasi-isometry | en |
dc.subject.other | Riemann surface | en |
dc.subject.other | Volume growth rate | en |
dc.title | Stability of the volume growth rate under quasi-isometries | en |
dc.type | research article | * |
dc.type.hasVersion | AM | * |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Stability_RMC_2019_ps.pdf
- Size:
- 692.92 KB
- Format:
- Adobe Portable Document Format