Publication:
Non-Boussinesq stability analysis of natural-convection gaseous flow on inclined hot plates

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería de Sistemas Energéticoses
dc.contributor.authorRajamanickam, P.
dc.contributor.authorCoenen, Wilfried
dc.contributor.authorSánchez, Antonio L.
dc.date.accessioned2022-09-01T08:08:23Z
dc.date.available2022-09-01T08:08:23Z
dc.date.issued2017-06
dc.description.abstractThe buoyancy-driven boundary-layer flow that develops over a semi-infinite inclined hot plate is known to become unstable at a finite distance from the leading edge, characterized by a critical value of the Grashof number Gr based on the local boundary-layer thickness. The nature of the resulting instability depends on the inclination angle /, measured from the vertical direction. For values of / below a critical value /c the instability is characterized by the appearance of spanwise traveling waves, whereas for/ > /c the bifurcated flow displays Görtler-like streamwise vortices. The Boussinesq approximation, employed in previous linear stability analyses, ceases to be valid for gaseous flow when the wall-to- ambient temperature ratio Hw is not close to unity. The corresponding non-Boussinesq analysis is pre- sented here, accounting also for the variation with temperature of the different transport properties. A temporal stability analysis including nonparallel effects of the base flow is used to determine curves of neutral stability, which are then employed to delineate the dependences of the critical Grashof number and of its associated wave length on the inclination angle / and on the temperature ratio Hw for the two instability modes, giving quantitative information of interest for configurations with Hw 1 1. The analysis provides in particular the predicted dependence of the crossover inclination angle /c on Hw , indicating that for gaseous flow with Hw 1 1 spanwise traveling waves are predominant over a range of inclination angles 0 6 / 6 /c that is significantly wider than that predicted in the Boussinesq approximation.en
dc.format.extent8
dc.identifier.bibliographicCitationRajamanickam, P., Coenen, W., & Sánchez, A. L. (2017). Non-Boussinesq stability analysis of natural-convection gaseous flow on inclined hot plates. In International Journal of Heat and Mass Transfer, 109, 949–957en
dc.identifier.doihttp://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.02.010
dc.identifier.issn0017-9310
dc.identifier.publicationfirstpage949
dc.identifier.publicationlastpage957
dc.identifier.publicationtitleINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFERen
dc.identifier.publicationvolume109
dc.identifier.urihttps://hdl.handle.net/10016/35617
dc.identifier.uxxiAR/0000029364
dc.language.isoengen
dc.publisherElsevier BVen
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0017931016334482?via%3Dihuben
dc.rights© 2017 Elsevier Ltd. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherNatural convectionen
dc.subject.otherInclined hot plateen
dc.subject.otherNon-boussinesq effectsen
dc.subject.otherVortex instabilityen
dc.subject.otherWave instabilityen
dc.titleNon-Boussinesq stability analysis of natural-convection gaseous flow on inclined hot platesen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Non_IJHMT_2017.pdf
Size:
803.18 KB
Format:
Adobe Portable Document Format