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Abstract

The buoyancy-driven boundary-layer flow that develops over a semi-infinite in-

clined hot plate is known to become unstable at a finite distance from the leading

edge, characterized by a critical value of the Grashof number Gr based on the

local boundary-layer thickness. The nature of the resulting instability depends

on the inclination angle φ, measured from the vertical direction. For values of

φ below a critical value φc the instability is characterized by the appearance

of spanwise traveling waves, whereas for φ > φc the bifurcated flow displays

Görtler-like streamwise vortices. The Boussinesq approximation, employed in

previous linear stability analyses, ceases to be valid for gaseous flow when the

wall-to-ambient temperature ratio Θw is not close to unity. The corresponding

non-Boussinesq analysis is presented here, accounting also for the variation with

temperature of the different transport properties. A temporal stability analy-

sis including nonparallel effects of the base flow is used to determine curves of

neutral stability, which are then employed to delineate the dependences of the

critical Grashof number and of its associated wave length on the inclination

angle φ and on the temperature ratio Θw for the two instability modes, giving

quantitative information of interest for configurations with Θw − 1 ∼ 1. The

analysis provides in particular the predicted dependence of the crossover inclina-

tion angle φc on Θw, indicating that for gaseous flow with Θw − 1 ∼ 1 spanwise
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traveling waves are predominant over a range of inclination angles 0 ≤ φ ≤ φc

that is significantly wider than that predicted in the Boussinesq approximation.

Keywords: natural convection; inclined hot plate; non-Boussinesq effects;

vortex instability; wave instability

1. Introduction

A semi-infinite inclined hot plate placed in a quiescent air atmosphere is

known to induce near its surface a free-convection flow as a result of the action

of buoyancy forces on the heated gas. The structure of the resulting boundary

layer away from the plate edge exhibits at leading order a self-similar structure,

as first noted in the experimental study of Schmidt and Beckmann [1]. This

boundary layer is known to become unstable to small disturbances at a cer-

tain distance measured from the leading edge of the plate [2]. The character of

the observed instability depends on the inclination angle φ, measured from the

vertical direction. Thus, for values of φ above a critical value φc, including in

particular horizontal and nearly horizontal plates, the instability develops in the

form of stationary counter-rotating vortex rolls that are oriented in the stream-

wise direction. These are similar to those characterizing the Görtler instability

of boundary-layer flow along a concave wall, driven by centrifugal forces, with

the wall-normal component of the buoyancy force being the driving mechanism

for free-convection flow. As the inclination angle φ is decreased, this wall-normal

buoyancy component loses importance and, below a certain crossover angle φc,

the character of the observed instabilities changes to Tollmien-Schlichting-like

traveling waves driven by shear. Following existing terminology [3, 4], in the

following the stability mode involving streamwise stationary vortices will be

termed vortex instability, whereas that involving traveling waves will be termed

wave instability.

Sparrow & Husar [2] were the first to identify both modes experimentally,

and to show that their prevalence depends on the inclination of the heated

surface. The crossover angle was determined by Lloyd & Sparrow [5] to lie
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between 14◦ < φc < 17◦. Other experiments carried out later agree generally

with these findings [6–11].

Apart from the inclination angle φ, the buoyancy-induced flow over a semi-

infinite flat plate at constant temperature depends on the Prandtl number Pr of

the fluid and on the ratio Θw = T ∗w/T
∗
∞ of the wall temperature to the ambient

temperature. All previous theoretical efforts aimed at quantifying the critical

conditions at the onset of the vortex and wave instabilities were performed in the

Boussinesq approximation [3, 4, 12–20], which is only justified in gaseous flow

when the wall-to-ambient relative temperature difference (Θw−1) is small. Most

of these studies employ linear local stability theory—a normal mode analysis—

to determine, for fixed values of Pr and φ, the critical boundary-layer thickness

δ∗o , measured in dimensionless form through a local Grashof number, above

which small perturbations, either of vortex type with associated spanwise wave

number l∗, or of wave type with streamwise wave number k∗, are amplified.

In this manner, a unique neutral curve in the Grashof – wave number plane

can be delineated for each mode. The mode with the lowest corresponding

critical Grashof number for all wave numbers would be the one that prevails

in an experiment, and the value of that Grashof number would give the local

boundary-layer thickness—and therefore the distance x∗ to the plate edge—at

which the instability first develops.

Conventionally, in a local stability analysis the base flow is assumed to be

strictly parallel. That assumption must be reconsidered in the analysis of slowly

varying slender flows, such as the present boundary layer, for which the order of

magnitude of some of the terms in the stability equations, involving the trans-

verse velocity component and the streamwise variation of the flow, is comparable

to that of the viscous terms, and must be correspondingly taken into account.

This so-called locally nonparallel approach was already adopted by Haaland &

Sparrow in their temporal stability analyses of the vortex [3] and wave [4] in-

stability modes. The resulting critical Grashof numbers were seen to differ by

several orders of magnitude from those obtained with a strictly parallel analysis,

thereby underlining the importance of the nonparallel terms. The problem was
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re-examined by a series of authors, adopting small variations of this approach,

either in a temporal [12, 13, 15–19] or a spatial [14] linear–stability framework.

The analysis can be extended to describe finite-amplitude vortex rolls and sec-

ondary bifurcations by retaining selected nonlinear terms in the description, as

done by Chen et al. [19]. Recently, instabilities in transient cooling of inclined

surfaces and cavities have been studied numerically [21, 22].

The accuracy of the computations mentioned above deteriorates in the pres-

ence of order–unity deviations of the wall temperature from the ambient tem-

perature, when the use of the Boussinesq approximation is no longer justified.

Although non-Boussinesq effects have been taken into account in analyses of

the boundary-layer structure for flow over a heated plate [23–25], these effects

have never been considered in connection with the associated stability problem.

The objective of the present work is to revisit the classical work of Haaland &

Sparrow [3, 4], including the influence of the wall-to-ambient temperature ratio

Θw for cases with Θw − 1 ∼ 1. In particular, a linear temporal modal stability

analysis will be performed to investigate both the vortex and the wave modes,

with account taken of nonparallel effects associated with the slow downstream

evolution of the base flow. The effect of Θw on the neutral stability curves

will be assessed, along with the dependence of the crossover angle defining the

transition between the two types of instability.

The paper is structured as follows. The governing equations and boundary

conditions for the base flow and for the linear stability analysis are given in § 2.

The vortex mode is studied in § 3, followed in § 4 by the analysis of the wave

instability. The predictions of the critical conditions for the two modes are

compared in § 5 to delineate the boundary that defines the regions of prevalence

of each mode on the parametric plane φ−Θw. Finally, concluding remarks are

offered in § 6.
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Figure 1: Schematic diagram of the boundary-layer flow over a heated inclined surface.

2. Problem formulation

The problem considered here, shown schematically in figure 1, involves the

flow induced by buoyancy near the surface of a semi-infinite inclined plate whose

temperature is held at a constant value, T ∗w, higher than the ambient temper-

ature T ∗∞ found in the surrounding quiescent air atmosphere. The associated

velocities are negligibly small compared to the sound speed, so that the conser-

vation equations can be written in the low-Mach number approximation

∂ρ∗

∂t∗
+∇∗ · (ρ∗v∗) = 0, (1)

ρ∗
∂v∗

∂t∗
+ ρ∗v∗ · ∇∗v∗ = −∇∗p∗ + (ρ∗ − ρ∗∞)g∗ +∇∗ ·

[
µ∗(∇∗v∗ +∇∗v∗T )

]
,

(2)

ρ∗
∂T ∗

∂t∗
+ ρ∗v∗ · ∇∗T ∗ =

1

Pr
∇∗ · (µ∗∇∗T ∗), (3)

where ρ∗, v∗, and T ∗ represent the density, velocity, and temperature of the

gas; dimensional quantities are indicated everywhere in the text with an aster-

isk (∗). In the momentum equation (2), p∗ represents the sum of the pressure

difference from the ambient hydrostatic distribution and the isotropic compo-

nent of the stress tensor. Cartesian coordinates are used in the description,
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including the streamwise distance measured along the plate from the leading

edge x∗, the transverse distance from the surface of the plate y∗, and the span-

wise coordinate z∗, with corresponding velocity components v∗ = (u∗, v∗, w∗).

The inclination angle φ is measured from the vertical, so that the gravity vector

is g∗ = −g∗ cosφ ex − g∗ sinφ ey.

The above equations must be supplemented with the equation of state

ρ∗

ρ∗∞
=
T ∗∞
T ∗

(4)

and with the presumed power law

µ∗

µ∗∞
=

κ∗

κ∗∞
=

(
T ∗

T ∗∞

)σ
(5)

for the temperature dependence of the viscosity and thermal conductivity, with

the subscript ∞ denoting properties in the unperturbed ambient air. The con-

stant values Pr = 0.7 and σ = 2/3, corresponding to air, will be used below

for the Prandtl number Pr = c∗pµ
∗
∞/κ

∗
∞ in (3) and for the exponent σ in (5).

Equations (1)–(3) must be integrated with the boundary conditions u∗ = v∗ = w∗ = T ∗ − T ∗w = 0 at y∗ = 0 for x∗ > 0

u∗ = v∗ = w∗ = T ∗ − T ∗∞ = p∗ = 0 as (x∗2 + y∗2)→∞ for y∗ 6= 0, x∗ > 0.

(6)

For plates that are not nearly horizontal, such that π/2−φ is not small, the

flow is driven by the direct acceleration associated with the gravity component

parallel to the plate g∗ cosφ. Near the leading edge of the plate there exists a

nonslender Navier–Stokes region of characteristic size [ν∗∞
2/(g∗ cosφ)]1/3 where

the velocity components are of order (ν∗∞g
∗ cosφ)1/3, with ν∗∞ = µ∗∞/ρ

∗
∞ denot-

ing the ambient kinematic viscosity, such that the local Reynolds number there

is of order unity. Outside this Navier–Stokes region the flow–field structure in-

cludes a boundary-layer region of characteristic thickness [(ν∗∞
2x∗)/(g∗ cosφ)]1/4

and characteristic streamwise velocity (g∗ cosφx∗)
1/2

, surrounded by an outer

region of slow irrotational motion driven by the boundary-layer entrainment.

The stability of the boundary layer at a given location x∗ = x∗o depends on
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the value of the associated Grashof number

Gr =
x∗o
δ∗o

=
δ∗o

3g∗ cosφ

ν∗∞
2 =

(
x∗o

3g∗ cosφ

ν∗∞
2

)1/4

, (7)

which is the Reynolds number based on the local values of the thickness and

streamwise velocity

δ∗o =

(
ν∗∞

2x∗o
g∗ cosφ

)1/4

and u∗o = (g∗ cosφx∗o)
1/2

. (8)

The following analysis assumes implicitly that the critical value of Gr associated

with the onset of the instability is moderately large, as corresponds to a location

x∗o/δ
∗
o � 1 far downstream from the Navier–Stokes region, where the flow near

the plate surface is slender, enabling the stability analysis to be developed on the

basis of the nearly parallel approximation, with the self-similar boundary-layer

solution used to evaluate the base flow, as indicated below.

2.1. Base flow

The near-plate solution that develops outside the Navier–Stokes region can

be described with small relative errors of order Gr−2 by using the boundary-

layer form of the conservation equations. We shall neglect the pressure dif-

ferences across the boundary layer, of order ρ∗∞g
∗ sinφ δ∗o , associated with the

transverse component of the gravitational acceleration g∗ sinφ, because they are

small compared with the streamwise hydrostatic pressure differences ρ∗∞g
∗ cosφx∗o

at distances x∗o � δ∗o tanφ, corresponding to local values of the Grashof number

Gr � tanφ, (9)

a condition readily satisfied outside the Navier–Stokes region for the inclined

plates with π/2 − φ ∼ 1 considered here. The resulting solution is self-similar

when expressed in terms of the dimensionless coordinate

η =
y∗

[(ν∗∞
2x∗)/(g∗ cosφ)]1/4

(10)

with use made of the nondimensional temperature and stream function

Θ(η) =
T ∗

T ∗∞
and F (η) =

ψ∗(
x∗3ν∗∞

2g∗ cosφ
)1/4 , (11)
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with associated self-similar velocity components

U =
u∗

(g∗ cosφx∗)1/2
= ΘF ′ and V =

v∗

(ν∗∞
2g∗ cosφ/x∗)1/4

=
Θ

4
(ηF ′ − 3F ) .

(12)

Here the prime is used to denote differentiation with respect to η. Introducing

these variables reduces the problem to that of integrating

(Θσ(ΘF ′)′)′ +
3

4
F (ΘF ′)′ − 1

2
ΘF ′2 + 1− 1

Θ
= 0, (13)

(ΘσΘ′)′ +
3

4
PrFΘ′ = 0, (14)

with boundary conditions F (0) = F ′(0) = F ′(∞) = Θ(0)−Θw = Θ(∞)−1 = 0,

where Θw = T ∗w/T
∗
∞ is the wall-to-ambient temperature ratio.

The numerical integration was performed using a spectral collocation method

with a fractional transformation defined by y = a(1 + ξ)/(b− ξ) [26], where a =

yc ymax/(ymax − 2yc) and b = 1 + 2a/ymax, that maps N Chebyshev collocation

points ξ ∈ [−1, 1] to the physical domain y ∈ [0, ymax] allocating N/2 collocation

points to the near-wall region 0 < y < yc. Values ymax = 200, yc = 15 and

N = 128 are found to be adequate, slightly higher than the values used in

[20] for spatial analysis. Resulting temperature and velocity profiles are shown

in figure 2 for different values of Θw, giving results similar to those presented

elsewhere [25].

2.2. Linear stability analysis

Using standard practice, the linear stability of the flow at x∗ = x∗o is inves-

tigated by introducing into (1)–(5) the perturbed nondimensional variables

v∗

u∗o
= v̄(x/Gr , y) + v(x, y, z, t) = (ū, v̄, 0) + (u, v, w)

T ∗

T ∗∞
= T (x/Gr , y) + θ(x, y, z, t)

ρ∗

ρ∗∞
= ρ̄(x/Gr , y) + ρ(x, y, z, t) (15)

µ∗

µ∗∞
= µ̄(x/Gr , y) + µ(x, y, z, t)

p∗

ρ∗∞u
∗
o
2 = p(x, y, z, t)
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Figure 2: The self-similar base-flow solution obtained by integration of (13)–(14) with Pr = 0.7

and σ = 2/3 for different values of Θw.

where

x =
x∗ − x∗

o

δ∗o
, y =

y∗

δ∗o
, z =

z∗

δ∗o
, and t =

t∗

δ∗o/u
∗
o

, (16)

leading to the linearized equations

∂ρ

∂t
= −ρ̄∇ · v − ρ∇ · v̄ − v · ∇ρ̄− v̄ · ∇ρ, (17)

ρ̄
∂v

∂t
= −ρ̄ v̄ · ∇v − ρ̄v · ∇v̄ − ρ v̄ · ∇v̄ −∇p− 1

Gr
ρ(ex + tanφ ey)

+
1

Gr
∇ ·

[
µ̄(∇v +∇vT ) + µ(∇v̄ +∇v̄T )

]
, (18)

ρ̄
∂θ

∂t
= −ρ̄ v̄ · ∇θ − ρ̄v · ∇T − ρ v̄ · ∇T

+
1

Gr Pr
∇ ·

[
µ̄∇θ + µ∇T

]
, (19)

and

ρ = −T
−2

θ and µ = σT
σ−1

θ. (20)

The base profiles v̄, T , ρ̄, and µ̄ can be evaluated from the self-similar velocity
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and temperature profiles U(η), V (η), and Θ(η) according to

ū = (1 + x/Gr)1/2 U(y/[1 + x/Gr ]1/4),

v̄ = Gr−1(1 + x/Gr)−1/4 V (y/[1 + x/Gr ]1/4),

T =
1

ρ̄
= µ̄1/σ = Θ(y/[1 + x/Gr ]1/4), (21)

written in terms of the local coordinates x = (x∗ − x∗o)/δ
∗
o and y = y∗/δ∗o

by using η = y/(1 + x/Gr)1/4 and Gr = x∗o/δ
∗
o . As can be seen, the base flow

displays a slow streamwise variation through the rescaled coordinate x/Gr . The

expressions given above can be used to evaluate the factors that appear in the

linearized equations (17)–(19). In the first approximation for Gr � 1 one

obtains the order-unity factors

ū = U(y),
∂ū

∂y
= U ′(y),

∂2ū

∂y2
= U ′′(y),

T =
1

ρ̄
= µ̄1/σ = Θ(y),

∂T

∂y
= Θ′(y),

∂2T

∂y2
= Θ′′(y), (22)

which pertain to the strictly parallel flow, along with the factors of order Gr−1

v̄ = Gr−1V (y),
∂v̄

∂y
= Gr−1V ′(y),

∂ū

∂x
= Gr−1

[
1

2
U(y)− y

4
U ′(y)

]
,

∂T

∂x
= −Gr−1

y

4
Θ′(y), and

∂ρ̄

∂x
= Gr−1

y

4

Θ′(y)

Θ2(y)
, (23)

arising from nonparallel effects.

The nearly parallel stability analysis performed here assumes implicitly a

moderately small value of Gr−1, a condition needed to ensure the slenderness

of the flow. The small parameter Gr−1 appears in (17)–(19) directly as a factor

in the molecular transport terms in (18) and (19) and also through the fac-

tors (23) associated with the slow streamwise variation of the base flow. If only

terms of order unity are retained in (17)–(19), then the resulting equations de-

scribe the inviscid instability of strictly parallel flow. By retaining also terms of

order Gr−1 one accounts simultaneously for viscous and nonparallel effects, that

being the approach pursued herein. Thus, following Haaland & Sparrow [3, 4],

the equations (17)–(19) were systematically simplified by retaining terms up to
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O(Gr−1), while neglecting terms of order Gr−2 and higher. The resulting sim-

plified equations are written in Appendix A for the normal-mode perturbations

[u, v, w, p, θ, ρ, µ](x, y, z, t) = ei(kx+lz−ωt)[û, v̂, ŵ, p̂, θ̂, ρ̂, µ̂](y), (24)

where k and l are the dimensionless streamwise and spanwise wave numbers,

and ω = ωr + iωi contains both the frequency ωr and the growth rate ωi of the

perturbations. The vortex instability is associated with modes with k = 0 and

ωr = 0, whereas the wave instability corresponds to l = 0 and ωr > 0. The two

types of instabilities will be studied separately in the following two sections.

3. Vortex instability

3.1. The simplified eigenvalue problem

We start by considering instabilities characterized by the appearance of

Görtler-like vortex rolls aligned with the streamwise direction, known to dom-

inate the boundary-layer dynamics for values of φ above a critical value φc.

These can be investigated by setting k = 0 in the normal-mode ansatz (24).

Chen et al. [19] showed that the principle of exchange of instabilities holds for

this type of instabilities, in the sense that in the full eigenvalue spectrum the

eigenvalue with the largest growth rate ωi has zero frequency ωr = 0. Hence,

the critical conditions for vortex instability can be computed by setting both

k and ω equal to zero in (A.1)–(A.5). Eliminating then p̂ and ŵ by combining

equations (A.1), (A.3) and (A.4), and introducing the transformation

ũ = û tanφ, ṽ = v̂, θ̃ = θ̂ tanφ, G̃r = Gr tanφ (25)
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to remove the explicit dependence on the inclination angle φ [3], leads to the

three equations

[D(ΘσD)− (V/Θ)D− (2U − yU ′)/(4Θ)] ũ

+
{

[1 + V U ′ + U(2U − yU ′)/4] /Θ2 + σΘσ−1(U ′D + U ′′)
}
θ̃ = G̃r

U ′

Θ
ṽ, (26)

D

[
1

l2

(
DΘσ − V

Θ

)
D

(
D− Θ′

Θ

)
+ DΘσ − 2Θσ

(
2D− Θ′

Θ

)]
ṽ

+

[
ΘσD

(
D− Θ′

Θ

)
+

1

Θ
(DV ) + Θσl2

]
ṽ −Θ−2θ̃ = 0, (27)[

D(ΘσD) + σ(DΘσ−1Θ′)− Pr
V

Θ
D−Θσl2 − Pr

(y
4
U − V

) Θ′

Θ2

]
θ̃

+ Pr
yΘ′

4Θ
ũ = G̃rPr

Θ′

Θ
ṽ, (28)

with boundary conditions

ũ = ṽ = Dṽ = θ̃ = 0 at y = 0 and as y →∞. (29)

In the operators acting on the eigenfunctions the symbol D denotes differenti-

ation with respect to y. A function of y placed immediately after D indicates

that multiplication by that function should be performed prior to differentia-

tion, so that, for instance, (DΘσ)ṽ = d(Θσ ṽ)/dy, while (ΘσD)ṽ = Θσdṽ/dy

instead. The eigenfunction ũ is coupled to ṽ and θ̃ through the last term on the

left-hand side in (28), associated with the slow streamwise variation of the base

temperature T . Also of interest is that for strictly parallel flow (i.e., when the

factors listed in (23) are set equal to zero), the problem becomes independent of

the base velocity field, and the resulting equations reduce to those corresponding

to Rayleigh-Bénard convection.

3.2. Numerical results

For a given wall-to-ambient temperature ratio Θw, which defines the base

flow, and a given spanwise wave number l, the above eigenvalue problem (26)–

(29) was solved numerically to determine the critical value G̃r0 of G̃r identifying

the conditions of neutral stability. The variation of G̃r0 = tanφGr0 with l is

shown in figure 3(a) for different Θw. As can be seen, each neutral curve G̃r0(l)
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Figure 3: Results of the non-Boussinesq analysis of the vortex instability, including curves of

neutral stability (a) along with the variation with Θw of G̃rm and of the associated spanwise

wave number lm (b); the triangles in (a) corresponds to evaluations of (30) with the values

of GrB reported in [3] (corrected to account for the factor 4 used in their definition of the

boundary-layer thickness δ∗o).

reaches a minimum value G̃r0 = G̃rm at l = lm. This minimum determines

the wave length 2π/lm of the most unstable mode along with the downstream

location x∗
m = (G̃rm/ tanφ)4/3[ν∗∞

2/(g∗ cosφ)] at which the vortices begin to

develop. To complete the description, the variation of G̃rm and lm for the most

unstable mode is plotted as a function of Θw in figure 3(b). It is evident from

the plots that increasing the wall-to-ambient temperature ratio Θw as well as

increasing φ towards a more horizontal position tends to destabilize the flow.

Also noteworthy is the rapid variation of G̃rm and lm with Θw for Θw − 1 � 1.

3.3. Departures from the Boussinesq approximation

The results can be compared to the Boussinesq analysis of Haaland & Spar-

row [3] by taking a wall-to-ambient temperature ratio Θw close to unity. The

Boussinesq Grashof number employed in [3], GrB = [β∗(T ∗
w−T ∗

∞)x∗3g∗ cosφ/ν∗∞
2]1/4,

is related to that defined in (7) by GrB = Gr [β∗(T ∗
w − T ∗

∞)]1/4. The result de-

pends on the temperature used to evaluate the coefficient of thermal expansion
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Figure 4: The variation of Grm tanφ with Θw obtained from integrations of the non-

Boussinesq eigenvalue problem (26)–(29) (solid curve) and from the Boussinesq predic-

tions (30) and (30) evaluated with GrB = 10.5, obtained by scaling the value given in [3], as

indicated in the text.

β∗, given for an ideal gas by β∗ = 1/T ∗. Thus, using the ambient temperature

to evaluate β∗
∞ = 1/T ∗

∞ yields

Grw = GrB(Θw − 1)−1/4 (30)

whereas the expression

Gr∞ = GrB(1−Θ−1
w )−1/4 (31)

is obtained by using the wall temperature to evaluate β∗
w = 1/T ∗

w. Clearly, the

temperature selected to define β∗ becomes irrelevant for Θw − 1 � 1, when the

relative differences between both expressions are of order (Θw − 1)/4. Equa-

tion (30) is selected in the comparison of figure 3(a) to evaluate the neutral curve

for Θw = 1.03 using the values of GrB reported in Haaland & Sparrow [3], giving

the results represented by the triangles.

As can be seen in figure 3(a), the differences between the predictions obtained

with the Boussinesq approximation and those accounting for non-Boussinesq ef-

fects are very small for Θw = 1.03, with departures in resulting values of G̃rm

and lm of the order of 1%. The departures are expected to become larger for

increasing values of Θw − 1, with the two expressions (30) and (31) leading to
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increasingly different values of Gr . This is tested in figure 4 by comparing the

curve G̃rm − Θw obtained from the numerical integrations of (26)–(29), given

previously in figure 3(b), with the predictions derived by extending the Boussi-

nesq approximation with use made of (30) and (31) evaluated with GrB = 10.5,

the latter obtained by dividing the value 29.6 reported in [3] by 2
√

2, as is needed

to account for the factor 4 used in their definition of the boundary-layer thick-

ness δ∗. As can be seen, our results lie between the two Boussinesq predictions,

with the thermal expansion based on the ambient temperature β∗∞ = 1/T ∗∞

giving better agreement. For the vortex mode, it is apparent from the curves in

the figure that straightforward extension of the stability results computed in the

Boussinesq approximation by use of (31) provides sufficiently accurate predic-

tions for the critical Grashof number even for configurations with Θw − 1 ∼ 1.

As seen below, the wave mode analyzed next is different in this connection, in

that the sharp decrease in G̃rm found for increasing Θw cannot be predicted by

simply extending the results of the Boussinesq approximation, regardless of the

temperature used in evaluating the thermal–expansion coefficient.

4. Wave instability

The wave instability on hot inclined plates has received significantly less

attention [4, 14, 16, 20] than the related vortex instability problem, possibly

because for Boussinesq flow its occurrence its restricted to a moderately small

angle range 0◦ < φ . 20◦ about the vertical position. In this connection, it is

worth anticipating that the present analysis will show that this range widens

significantly for non-Boussinesq gaseous flow with Θw − 1 ∼ 1.

4.1. The simplified eigenvalue problem

In accordance with Squire’s theorem, only two-dimensional disturbances

need to be considered below, so that l = 0 in (24). Although a spatial sta-

bility analysis is needed to accurately determine the downstream growth rate of

the disturbance [14, 20], the present work focuses on the determination of the
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Figure 5: Curves of neutral stability for the wave mode with different wall-to-ambient tem-

perature ratios Θw and different inclination angles φ.

curves of neutral stability, associated with real values of both the wave number

k and the frequency ω, which can be obtained with a simpler temporal stability

analysis.

With l = 0 the problem simplifies, in that the solution for û, v̂, p̂, and

θ̂ becomes independent of ŵ, so that the eigenvalue problem reduces to the

solution of (A.1)–(A.3) and (A.5) with the homogeneous boundary conditions

û = v̂ = θ̂ = 0 at y = 0, and û, v̂, θ̂, p̂ → 0 as y → ∞. (32)

The eigenvalue nature of this problem becomes more apparent by casting the

equations in the standard form Af = ωBf , with A and B being linear differ-

ential operators acting on f = (û, v̂, p̂, θ̂). As a result of the non-Boussinesq

character of the continuity equation, elimination of p̂ and û by linear combina-

tions leads to a quadratic eigenvalue problem for the eigenvalue ω, which is not

further considered here because of the additional complications involved in its

numerical solution.
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Figure 6: Curves of neutral stability for the wave-instability mode with Θw = 1.03 and

φ = 30◦ obtained from (A.1), (A.5) and (33) (solid curve) and by repeating the computations

with the underlined term removed in (33) (dashed curve); the dotted curve corresponds to

evaluations of (30) with the values of GrB reported in [4].

4.2. Critical curves of neutral stability

Results obtained by integrating numerically the eigenvalue problem for the

wave instability are shown in figure 5. Unlike the vortex instability, for which

the dependence on the inclination angle can be scaled out of the equations by

the transformation (25), thereby reducing the parametric dependence of the re-

sults, the eigenvalue problem for the wave instability depends on both φ and

Θw. Curves of neutral stability are plotted in figures 5(a) and 5(b) for a fixed

inclination angle φ and different values of the wall temperature ratio Θw, with

corresponding curves for fixed Θw and different values of φ given in figures 5(c)

and 5(d). Just as for the vortex instability, increasing the wall-to-ambient tem-

perature ratio, as well as increasing the inclination angle (a more horizontal

plate) has a destabilizing effect on the flow. The rapid change in the neutral

curves shown in the upper plots of the figure as the wall temperature increases

from Θw = 1.03 to Θw = 1.2 is indicative of the importance of non-Boussinesq

effects for wave instability.
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4.3. Stability predictions based on vorticity–stream function formulation

Before continuing the discussion of results, it is worth commenting on the

differences arising from the use of different starting conservation equations in

the presence of a slowly varying base flow. Unlike many previous analyses,

which were derived on the basis of a vorticity–stream function formulation, the

present analysis employs as a starting point the conservation equations written

in primitive variables. Although the logical expectation is that both approaches

yield the same results, that being the case for strictly parallel base flow, small

but noticeable discrepancies were found between both computational approaches

when the nonparallel terms are retained for the base flow. This is so because

when the pressure is eliminated from the equations written in primitive variables

after the normal mode decomposition is introduced, i.e. from equations (A.1)–

(A.5), to obtain a normal-mode vorticity form, the resulting set of equations is

not identical to that obtained by writing the momentum equation in terms of the

vorticity before introducing the normal mode decomposition. This discrepancy

does not happen when analyzing the vortex mode, because the direction of the

vorticity differs between the base flow and the perturbations, i.e. the base-flow

vorticity is oriented along the spanwise direction while the perturbed vorticity

is oriented along the streamwise direction.

These differences can be illustrated by comparing the results of our formula-

tion for Θw � 1 with those obtained earlier by Haaland & Sparrow [4] using the

linearized vorticity–stream function Boussinesq formalism presented earlier in

[27]. The comparison can be readily established by writing our equations (A.2)

and (A.3) for Θw − 1� 1 followed by elimination of the pressure to yield

[D3 − VD2 −Gr i(Uk − ω)D− k2D + V ′′]û

[−ikD2 + ikVD−Gr k(Uk − ω)−GrU ′′ + ik3 + ikV ′]v̂ + [D− ik tanφ]θ̂ = 0

(33)

after the continuity equation is used to simplify the result. Comparing the above

equation with equation (15) in [27] reveals that both are identical, except for

the underlined term in (33), which is absent in [27], that being a consequence of
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Figure 7: The variation of Grm with Θw for φ = 30◦ obtained for the wave instability from

integrations of the non-Boussinesq eigenvalue problem (solid curve) and from the Boussinesq

predictions (30) and (31) evaluated with GrB = 17.96, the latter computed by extrapolating

the numerical results as Θw → 1.

the different derivation procedure. As previously mentioned, the missing term,

proportional to the transverse gradient of the transverse base velocity, would be

absent for strictly parallel flow. Its quantitative importance is assessed in fig-

ure 6, where the neutral curve obtained using (A.1) and (A.5) together with (33)

(solid curve) is compared with that obtained after selectively removing the term

ikV ′ in (33) (dashed curve). The additional term is seen to destabilize the flow,

resulting in critical Grashof numbers that are about 10% smaller than those ob-

tained on the basis of the vorticity–stream function formulation. As expected,

the dashed curve is seen to agree with that obtained by evaluating (30) with

the values of GrB reported in Haaland & Sparrow [4] for φ = 30o, represented

by a dotted line in figure 6.

4.4. Quantitative assessment of non-Boussinesq effects

To complete the description, the Boussinesq predictions (30) and (31) are

compared in figure 7 with the results of the non-Boussinesq eigenvalue problem

for φ = 30o. The value GrB = 21.11 used in the evaluations of (30) and (31)

is extracted from our numerical results for Θw − 1 � 1. Because of the dis-

crepancies illustrated in figure 6, this value is somewhat smaller than the value
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Figure 8: The left-hand-side plot represents the variation of the critical Grashof number with

the inclination angle for the wave mode (dashed curves) and for the vortex mode (solid curves)

for different values of the wall-to-ambient temperature ratio Θw, while the right-hand-side plot

gives the variation with Θw of the crossover angle φc at which each pair of curves crosses.

reported in [4], which gives GrB = 23.63 once corrected to account for differ-

ences in their definition of δ∗. As can be seen in figure 7, the extrapolations

of the Boussinesq results consistently overpredict the critical Grashof number.

This is so because the Boussinesq approximation does not describe accurately

the acceleration of the light gas for increasing Θw, which is apparent in the

velocity profiles in figure 2, resulting in augmented shear stresses that trigger

the wave–mode instability.

5. Variation of the crossover angle

It is apparent from the comparison of the curves in figures 4 and 7 that

non-Boussinesq effects have a larger influence on the wave mode than they

have on the vortex mode. For both modes, increasing the plate temperature

promotes instability by decreasing the associated critical Grashof number, but

the decrease of Grm is much more pronounced for the wave mode, thereby

suggesting that the character of the instability that develops over a plate at a
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given inclination angle may switch from a vortex mode to a wave mode as the

plate temperature increases.

To investigate this aspect of the problem we compare in figure 8(a) the

curves Grm = G̃rm/ tanφ corresponding to the vortex mode, with G̃rm(Θw)

given in figure 3(b), with the values of Grm obtained from the turning points of

the neutral curves computed for the wave mode for a fixed value of Θw, given

for instance in figure 5(c) for the particular case Θw = 1.5. The crossing point

of each pair of curves determines the angle φc at which the character of the

most unstable mode changes from a traveling wave (for φ < φc) to stationary

streamwise vortices (for φ > φc). The resulting crossover angle increases for

increasing Θw, as shown in figure 8(b), which delineates the parametric regions

where each one of the modes prevails.

Our linear stability analysis predicts a crossover angle φc = 23.8◦ for Θw −

1� 1, in agreement with the value φc = 22◦ reported in previous linear stability

analyses [15, 16] using instead the scalings of the horizontal boundary layer

for the self-similar base flow. A somewhat smaller value was estimated in the

work of Kahawita and Meloney [13] by evaluating approximately the critical

Grashof number of the wave mode from the results of the vertical plate through

simple multiplication by cosφ. It is worth noting that the values observed

in experiments are typically somewhat smaller than the theoretical predictions

(e.g., values in the range 14◦ < φc < 17◦ are reported in the early work [5]). The

deviations are attributable to the limitations of the linear analysis performed

here, although more work is needed to clarify this issue.

As the value of Θw increases the crossing points of the curves in figure 8(a)

moves to the right, corresponding a wider range 0 ≤ φ < φc where the wave

mode prevails. Unexpectedly, the two curves Grm − φ become tangent at

Θw ' 1.8 and exhibit no crossing point for larger values of Θw > 1.8, for which

our analysis predicts the wave mode to be dominant for all angles. Clearly, how-

ever, this prediction would need to be reconsidered for near-horizontal plates

with values of φ approaching π/2, for which the condition (9), used in deriv-

ing the governing equations for the inclined plate, would no longer hold. A
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revised stability analysis, accounting for transverse pressure differences across

the boundary layer in deriving the governing equations for both the base flow

and its perturbations, would be needed to assess the transition between both

instability modes for very hot plates with Θw > 1.8.

6. Concluding remarks

Although the existing experimental evidence and the previous theoretical

predictions based on the Boussinesq approximation indicate that at higher wall

temperatures the flow tends to become unstable at lower values of the Grashof

number, corresponding to smaller downstream distances from the plate edge,

quantitative results for relative wall-to-ambient temperature differences of or-

der unity are not currently available. This paper provides the needed quantifi-

cation on the basis of a non-Boussinesq temporal stability analysis accounting

for the slow variation of the base flow. The results provide predictions of crit-

ical Grashof numbers for both modes of instability and their associated wave

numbers. While non-Boussinesq effects are found to have only a moderate quan-

titative effect on the instability mode involving streamwise vortices, it is found

that the augmented shear resulting from the flow acceleration in the presence

of large density differences promotes wave instabilities significantly. As a result,

the range of angles about the vertical position where the wave mode is domi-

nant is predicted to increase substantially with increasing wall temperatures, a

finding of our linear stability analysis that warrants future experimental inves-

tigation.

The characteristics of the analysis presented, both linear and local, limit the

accuracy of some of the predictions. For instance, the nonlinear growth of the

perturbations, not described herein, may explain the discrepancies between the

predicted value of φc = 23.8◦ for Θw − 1� 1 and previous experimental obser-

vations. Also, although the analysis accounts for the slow streamwise variation

of the base flow in (15), the shape functions of the accompanying perturbations,

as well as the wave numbers k and l are not allowed to depend on the rescaled
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coordinate x/Gr , as would be needed to account for their downstream evolu-

tion. Incorporating the latter, while still taking advantage of the slenderness of

the boundary-layer flow associated with moderately large values of the Grashof

number—thus retaining only terms up to O(Gr−1)—would turn the local stabil-

ity problem into a nonlocal parabolic stability problem that has to be integrated

in the downstream direction. In this type of treatment a unique neutral curve

cannot be defined since the streamwise development depends strongly on the

initial conditions that are imposed at a certain location, as pointed out for the

first time by Hall [28] for the related problem of Görtler instability over a curved

wall. Subsequent studies [29] have found that, although different initial condi-

tions result in different growth rates during the transient stage, at very large

downstream distances the local growth rate is found to be independent of the

initially imposed disturbance. Although an attempt to apply these concepts to

the present problem was made by Tumin [20], more work is clearly needed to

further clarify the instability characteristics of natural-convection flows.

A global stability analysis of the natural-convection flow under consideration,

in which the instabilities are considered as two-dimensional temporal Fourier

modes, is also worth pursuing in future work. Since this alternative approach

does not invoke the slenderness condition of the basic flow, it might prove useful

to study cases with very large wall-to-ambient temperature ratios, for which, as

shown in the present work, the instability sets in at smaller Grashof numbers,

and thus at shorter distances from the leading edge. The highly nonparallel

Navier-Stokes region close the edge of the plate then may play an important

role in these early transition events.
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Appendix A. Stability equations

Introducing the normal-mode decomposition (24) into (17)–(20) with ρ̂ =

−Θ−2θ̂ and µ̂ = σΘσ−1θ̂ and discarding terms of order Gr−2 yields

[
Gr ikΘ−1 + (y/4)Θ−2Θ′

]
û+ Gr(DΘ−1)v̂ + Gr i lΘ−1ŵ

− [DV + Gr i (Uk − ω) + (2U − yU ′)/4] Θ−2θ̂ = 0, (A.1)

[D(ΘσD)−Θ−1VD−Gr i Θ−1(Uk − ω)−Θ−1(2U − yU ′)/4

−Θσ(2k2 + l2)]û+
[
ik(DΘσ)−GrΘ−1U ′

]
v̂ − klΘσŵ −Gr i kp̂

+ [σ(DU ′Θσ+1) + U(2U − yU ′)/4 + V U ′ + 1]Θ−2θ̂ = 0, (A.2)

(ikΘσD)û+
[
2D(ΘσD)−Θ−1(DV )−Gr i Θ−1(Uk − ω)−Θσ(k2 + l2)

]
v̂

+ (i lΘσD)ŵ −Gr Dp̂+ (tanφΘ−2 + σ i k U ′Θσ−1)θ̂ = 0, (A.3)

−Θσk l û+ i l(DΘσ)v̂ + [D(ΘσD)−Θ−1VD

−Gr iΘ−1(Uk − ω)−Θσ(k2 + 2l2)]ŵ −Gr ilp̂ = 0, (A.4)

(PrΘ−1Θ′y/4)û−GrPrΘ−1Θ′v̂ + [D(ΘσD + σΘ′Θσ−1)− PrΘ−1VD

−GrPr iΘ−1(Uk − ω)−Θσ(k2 + l2) + Pr(V − Uy/4)Θ−2Θ′]θ̂ = 0, (A.5)

to be integrated with boundary conditions

û = v̂ = ŵ = θ̂ = 0 at y = 0, and û = v̂ = ŵ = θ̂ = p̂ = 0 as y →∞. (A.6)

As in the main text, the symbol D denotes differentiation with respect to y. In

the convention adopted a function of y placed after D indicates that multipli-

cation by that function should be performed prior to differentiation.
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