Publication:
An efficient implementation of parallel parametric HRTF models for binaural sound synthesis in mobile multimedia

dc.affiliation.dptoUC3M. Departamento de Tecnología Electrónicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Diseño Microelectrónico y Aplicaciones (DMA)es
dc.contributor.authorBelloch Rodríguez, José Antonio
dc.contributor.authorRamos, Germán
dc.contributor.authorBadía, José Manuel
dc.contributor.authorCobos, Máximo
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2022-11-30T13:16:43Z
dc.date.available2022-11-30T13:16:43Z
dc.date.issued2020-03-09
dc.description.abstractThe extended use of mobile multimedia devices in applications like gaming, 3D video and audio reproduction, immersive teleconferencing, or virtual and augmented reality, is demanding efficient algorithms and methodologies. All these applications require real-time spatial audio engines with the capability of dealing with intensive signal processing operations while facing a number of constraints related to computational cost, latency and energy consumption. Most mobile multimedia devices include a Graphics Processing Unit (GPU) that is primarily used to accelerate video processing tasks, providing high computational capabilities due to its inherent parallel architecture. This paper describes a scalable parallel implementation of a real-time binaural audio engine for GPU-equipped mobile devices. The engine is based on a set of head-related transfer functions (HRTFs) modelled with a parametric parallel structure, allowing efficient synthesis and interpolation while reducing the size required for HRTF data storage. Several strategies to optimize the GPU implementation are evaluated over a well-known kind of processor present in a wide range of mobile devices. In this context, we analyze both the energy consumption and real-time capabilities of the system by exploring different GPU and CPU configuration alternatives. Moreover, the implementation has been conducted using the OpenCL framework, guarantying the portability of the code.en
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Economy and Competitiveness under Grant RTI2018-097045-B-C21, Grant RTI2018-097045-B-C22, Grant TIN2017-82972-R, and Grant ESP2015-68245-C4-1-P, and in part by the Universitat Jaume I Project UJI-B2019-36.en
dc.format.extent12es
dc.identifier.bibliographicCitationBelloch, J. A., Ramos, G., Badia, J. M., & Cobos, M. (2020). An efficient implementation of parallel parametric HRTF models for binaural sound synthesis in mobile multimedia. IEEE access: practical innovations, open solutions, 8, 49562–49573.en
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2020.2979489
dc.identifier.issn2169-3536
dc.identifier.publicationfirstpage49562es
dc.identifier.publicationlastpage49573es
dc.identifier.publicationtitleIEEE Accessen
dc.identifier.publicationvolume8es
dc.identifier.urihttps://hdl.handle.net/10016/36134
dc.identifier.uxxiAR/0000029566
dc.language.isoengen
dc.publisherIEEEen
dc.relation.projectIDGobierno de España. ESP2015-68245-C4-1-Pes
dc.relation.projectIDGobierno de España. RTI2018-097045-B-C21es
dc.relation.projectIDGobierno de España. RTI2018-097045-B-C22es
dc.relation.projectIDGobierno de España. TIN2017-82972-Res
dc.rightsCCBY - IEEE is not the copyright holder of this materialen
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaElectrónicaes
dc.subject.otherBinaural synthesisen
dc.subject.otherHrtf modelingen
dc.subject.otherGpuen
dc.subject.otherParallel filtersen
dc.subject.otherParametric modelen
dc.subject.otherInterpolationen
dc.titleAn efficient implementation of parallel parametric HRTF models for binaural sound synthesis in mobile multimediaen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
efficient_IEEEA_2020.pdf
Size:
7.42 MB
Format:
Adobe Portable Document Format