Publication:
Numerical treatment of a magnetized electron fluid model within an electromagnetic plasma thruster simulation code

dc.affiliation.dptoUC3M. Departamento de Ingeniería Aeroespaciales
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Equipo de Propulsión Espacial y Plasmas (EP2)es
dc.contributor.authorZhou, Jiewei
dc.contributor.authorPérez Grande, Daniel
dc.contributor.authorFajardo Peña, Pablo
dc.contributor.authorAhedo Galilea, Eduardo Antonio
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-11-12T10:25:11Z
dc.date.available2021-11-12T10:25:11Z
dc.date.issued2019-11-07
dc.descriptionCorrection to this article published in: Plasma Sources Science and Technology, (Jan. 2020), 29(1), 019601. https://doi.org/10.1088/1361-6595/ab5df3en
dc.description.abstractPlasma discharges in electromagnetic thrusters often operate with weakly-collisional, magnetized electrons. Macroscopic models of electrons provide affordable simulation times but require to be solved in magnetically aligned meshes so that large numerical diffusion does not ruin the solution. This work discusses suitable numerical schemes to solve the axisymmetric equations for the electric current continuity and the tensorial Ohm's law in such meshes, when bounded by the thruster cylindrical or annular chamber. A finite volume method is appropriate for the current continuity equation, even when meshes present singular magnetic points. Finite differences and weighted least squares methods are compared for the Ohm's law. The last method is more prone to producing numerical diffusion and should be used only in the boundary cells and requires a special formulation in the boundary faces. In addition, the use of the thermalized potential is suggested for an accurate computation of parallel electron current densities for very high conductivity. The numerical algorithms are tested in a hybrid (particle/fluid) simulation code of a helicon plasma thruster, for different magnetic fields, mesh refinement, and plume lengths. The different contributions to the electric current density are assessed and the formation and relevance of longitudinal electric current loops are discussed.en
dc.description.sponsorshipThe work of J Zhou has been supported mainly by Airbus DS (CW240050) at Toulouse, France. The contributions of D Pérez-Grande and P Fajardo were supported mainly by the National Research and Development Program of Spain (partially with FEDER funds) under grant number ESP2016-75887-P. The work of E Ahedo was supported mainly by the PROMETEO-CM project, funded by the Comunidad de Madrid, under Grant Y2018/NMT-4750 (including FEDER and FSE funds).en
dc.description.statusPublicadoes
dc.format.extent16
dc.identifier.bibliographicCitationPlasma Sources Science and Technology, (2019), v. 28, n. 11, 115004.en
dc.identifier.doihttps://doi.org/10.1088/1361-6595/ab4bd3
dc.identifier.issn0963-0252
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue11(115004)
dc.identifier.publicationlastpage16
dc.identifier.publicationtitlePLASMA SOURCES SCIENCE & TECHNOLOGYen
dc.identifier.publicationvolume28
dc.identifier.urihttps://hdl.handle.net/10016/33595
dc.identifier.uxxiAR/0000024469
dc.language.isoengen
dc.publisherIOPen
dc.relation.ispartofhttp://hdl.handle.net/10016/33595
dc.relation.projectIDComunidad de Madrid. Y2018/NMT-4750/PROMETEO-CMes
dc.relation.projectIDGobierno de España. ESP2016-75887-Pes
dc.rights© 2019 IOP Publishing Ltd.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaAeronáuticaes
dc.subject.otherElectric propulsionen
dc.subject.otherNumerical simulationsen
dc.subject.otherMagnetized electron fluidsen
dc.titleNumerical treatment of a magnetized electron fluid model within an electromagnetic plasma thruster simulation codeen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
numerical_PSST_2019_ps.pdf
Size:
7 MB
Format:
Adobe Portable Document Format