Probabilistic Topic Model for Context-Driven Visual Attention Understanding

Thumbnail Image
Publication date
Defense date
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Modern computer vision techniques have to deal with vast amounts of visual data, which implies a computational effort that has often to be accomplished in broad and challenging scenarios. The interest in efficiently solving these image and video applications has led researchers to develop methods to expertly drive the corresponding processing to conspicuous regions that either depend on the context or are based on specific requirements. In this paper, we propose a general hierarchical probabilistic framework, independent of the application scenario, and relied on the most outstanding psychological studies about attention and eye movements which support that guidance is not based directly on the information provided by early visual processes but on a contextual representation that arose from them. The approach defines the task of context-driven visual attention as a mixture of latent sub-tasks, which are, in turn, modeled as a combination of specific distributions associated to low-, mid-, and high-level spatio-temporal features. Learning from fixations gathered from human observers, we incorporate an intermediate level between feature extraction and visual attention estimation that enables to obtain comprehensively guiding representations. The experiments show how our proposal successfully learns particularly adapted hierarchical explanations of visual attention in diverse video genres, outperforming several leading models in the literature.
Top-down visual attention, Hierarchical probabilistic framework, Context-aware model, Latent topic models
Bibliographic citation
IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(6), pp. 1653 - 1667.