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Probabilistic Topic Model for Context-Driven
Visual Attention Understanding
Miguel-Ángel Fernández-Torres, Iván González-Dı́az, Member, IEEE

and Fernando Dı́az-de-Marı́a, Member, IEEE.

Abstract—Modern computer vision techniques have to deal
with vast amounts of visual data, which implies a computational
effort that has often to be accomplished in broad and challenging
scenarios. The interest in efficiently solving these image and video
applications has led researchers to develop methods to expertly
drive the corresponding processing to conspicuous regions that ei-
ther depend on the context or are based on specific requirements.
In this paper, we propose a general hierarchical probabilistic
framework, independent of the application scenario, and founded
on the most outstanding psychological studies about attention
and eye movements which support that guidance is not based
directly on the information provided by early visual processes but
on a contextual representation arose from them. The approach
defines the task of context-driven visual attention as a mixture
of latent sub-tasks, which are in turn modeled as a combination
of specific distributions associated to low-, mid- and high-level
spatio-temporal features. Learning from fixations gathered from
human observers, we incorporate an intermediate level between
feature extraction and visual attention estimation that enables
to obtain comprehensively guiding representations. Experiments
show how our proposal successfully learns particularly adapted
hierarchical explanations of visual attention in diverse video
genres, outperforming several leading models in the literature.

Index Terms—Top-down visual attention, hierarchical proba-
bilistic framework, context-aware model, latent topic models.

I. INTRODUCTION

A great world full of visible information to understand is
opened to us, and our visual system has the paramount

task of dealing with attentive processes. Due to the limited
capacity of the brain to process such a big amount of sensory
input, attention involves the inherent search operations that
reformulate and optimize generic perception and cognition
problems so that they become tractable [1]. Eye movements
allow acquiring and tracking visual stimuli, unconsciously
highlighting the most conspicuous [2] [3] areas in a partic-
ular context, or willingly selecting those that aid to solve a
particular task [4].

Computer vision techniques have nowadays to deal with
millions and millions of data available, just like the human
visual system. This is probably the prime reason why the
effort in developing computational systems to accomplish
this selective task has increased during the last few years.
The purpose of researchers is to address traditional image
and video applications, such as object [5] and action [6]
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recognition, video surveillance [7], video summarization [8]
or image quality assessment [9], in broader and more complex
scenarios, while providing more efficient solutions and better
performances.

Looking from a psychological perspective, two theories
have been the most influential for computational attention
systems. First, the Feature Integration Theory (FIT) [10],
introduced by Treisman and Gelade in 1980, stated that several
features are identified early, automatically and in parallel
across the visual field, while objects are registered separately
as a conjunction of these features at a later serial stage. In ad-
dition to this theory, Wolfe’s Guided Search Model 2.0 (GSM)
[11] in 1994 claimed that this serial search had to be guided by
useful information in the parallel processes and not indepen-
dently, which divided the set of stimulus into distractors and
candidate targets. It should also be mentioned the importance
of eye movements in scene perception, explained in the famous
classic study of Yarbus [12] from 1967. A complete experience
of perception is based on both a general abstract representation
of the scene and the information provided by fixations.

Based on the foundations of these theories and studies,
we can differentiate between two main families of visual
attention models: bottom-up and top-down. Bottom-Up (BU)
models are mainly based on characteristics of the visual scene
(stimulus-driven) such as color, orientation, motion or depth.
By contrast, Top-Down (TD) models (goal-driven) are deter-
mined by cognitive phenomena like knowledge, expectations
or advanced indications. Despite the great amount of visual
attention models developed, most of them are BU approaches,
whereas TD architectures are still scarce and very often
tailored to well-defined scenarios. In such cases, the evaluation
of the whole scheme is performed regardless of the capability
of the guidance tool. Besides, few investigations acquire the
frequently mentioned concurrence of BU and TD factors. No
less important is the lack of use and modeling of spatio-
temporal and high-level features to address visual attention
in real scenarios or videos.

To overcome these shortcomings, we propose a general
hierarchical probabilistic framework to estimate visual atten-
tion in videos, which can be applied to different scenarios
and tasks by simply learning from human fixations. In our
model, TD visual attention is decomposed into mixtures of
various latent sub-tasks, which are in turn represented as
combinations of low-, mid- and high-level features. Depending
on the context, distinct features could draw visual attention.
For instance, motion features are useful to follow players and
track objects in outdoor scenes, while color, faces or text are
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more relevant in TV recordings. However, the fundamental
basis of the system is, indeed, generic and independent from
the application scenario.

This paper is a continuation of our previous work described
in [13], where we first introduced this intermediate level
formed by latent sub-tasks that bridges the gap between
features and visual attention, and enables to obtain more
comprehensive interpretations of guidance. More precisely,
this article makes several substantial contributions, which
update and extend this work as follows:

1) We generate a categorical binary response for each spatial
location to model visual attention, in contrast to the continuous
variable used in our previous approach. The system now
allows to automatically align the sub-tasks discovered to a
binary response by means of a logistic regressor, which fully
corresponds to the definition of human fixations.

2) We extend the initial set of basic and novelty spatio-
temporal low-level features presented in our first work, in-
cluding and modeling some new mid- and high-level features
related to camera motion estimation and object detection,
and taking advantage of powerful paradigms such as the
Convolutional Neural Networks (CNNs).

3) We provide an in-depth analysis of our proposal for the
first time, giving a meaningful insight about the information
reflected in each of the sub-tasks that decompose the visual
attention. To this end, we illustrate how our approach suc-
cessfully learns hierarchical guiding representations adapted
to several contexts. Furthermore, we perform a comparison
with quite a few methods reported in the literature of visual
attention in video.

The remainder of the paper is organized as follows: Section
II reviews the most relevant and recent related work in
perception and visual attention. Section III presents in detail
the generative model proposed and briefly introduces the broad
set of features considered in our experiments. Experimental
results, together with an analysis of the obtained models and
a comparison with state-of-the-art methods, are gathered in
Section IV. Finally, Section V summarizes our conclusions
and motivates and outlines future work.

II. RELATED WORK

A. Psychological basis of visual attention

As mentioned above, both Treisman and Gelade (FIT) [10]
and Wolfe (GSM) [11] theories established relevant features
for the perception of objects, which form the basis of many
of the existing visual attention models. First, FIT [10] and
other behavioral analysis mentioned three basic features: in-
tensity or luminance contrast, color and orientation. GSM
[11] supported later that attention can be guided towards
specific targets by modulating gains associated with low-level
features, and enumerated other attributes that humans can
appreciate efficiently and thus could be also considered salient
in a scene: curvature, texture, scale, size, spatial frequency,
motion, shape, luminance onset/offset and depth. Subsequents
works by Wolfe [14] [15] introduced the idea of ‘guiding
representation’ or guidance as a control device located to
one side of the main pathway from early vision to object

recognition. It controls the access to the attentional bottleneck,
so the guidance is abstracted from the main pathway despite
of not being part of the pathway itself. Rather than altering
the stimulus such as filters would do, this module guides
attention as a CCTV operator working at a public building
(e.g. a train station or a university) would do. Based on an
abstract representation of some notions (e.g. threat, suspicious
object), the operator selects some parts of the scenario to
receive more attention than others. Hence, guidance is not
based directly on the information provided by early visual
processes but on a coarse and contextual representation derived
from them. This interpretation of visual attention supports
the main assumption of our model and opens the door to
an inclusion of an intermediate layer that maps the low level
stimuli to an intermediate representation. Furthermore, Wolfe
extended the list of attributes that might guide the deployment
of attention in [14], raising doubtful cases such as novelty or
faces, which are tested as input to our approach, in order to
appraise their utility in some contexts.

Moreover, the role of eye movements in scene perception
had already been studied before the introduction of perception
theories referred above. According to the revision of high-level
scene perception research made by J. M. Henderson and A.
Hollingworth in [16], it is expected to figure out what are the
procedures that control where and how long each fixation point
tends to remain centered at a particular location for a complete
understanding of scene perception. Yarbus [12] classic study
of 1967 showed that, although first few fixations in a scene
seem to be controlled by global characteristics, positions of
later fixations are not random but landed on regions that
are useful or essential for perception. Eyes are either driven
by TD factors that direct fixations toward informative task-
driven locations (e.g. cooking, driving) or led to low-level
image discontinuities called salient regions (e.g. bright regions,
edges). The time the eyes remain in a given region also
depends on its visual and semantic properties. The experience
of a complete and integrated visual world is thus based on an
abstract representation that covers general information about
the scene combined with perceptual information arose from
fixations. By examining eye movements, it could be possible
to infer the underlying factors affecting fixations or task at
hand, even to interpret observer thoughts [17]. That is the
purpose of our model, which introduces an intermediate level
between feature extraction and visual attention computation
stages based on the information drawn from fixations. This
level consists of latent sub-tasks that can be used to determine
why some locations are more conspicuous than others. Thus,
rather than directly learn a predictor of human attention over
low-level visual features, our method provides a hierarchical
interpretation of visual attention, advantageous for further
comprehensive analysis.

B. Computational visual attention models

While Koch and Ullman [18] designed a model to combine
early vision features, and defined the concept of Saliency Map
(SM) as a mechanism to model local visual attention driven by
the set of visual stimuli in the scene, the first implementation
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and verification of a BU model, which uses color, intensity
and orientation features, was performed by Itti et al. [19].
Harel et al. [20] proposed a saliency algorithm based on
graphs, which extracted the same features at different scales.
These two representations are the most frequently employed
in the literature due to their good performance in a variety of
situations. For further information, a wider survey on visual
attention modeling is presented by Borji et al. in [21].

Despite their importance in the process of driving visual
attention, we still lack of generic TD architectures. TD meth-
ods are still limited, and mostly integrated within systems
conformed to specific scenarios, being the behavior of these
approaches often evaluated at application level. Moreover, few
investigations consider the cooperative relationship between
BU and TD mechanisms that is advocated by the prevalent
studies about attention. Most TD approaches guide attention
towards specific targets by modulating gains associated with
low-level stimuli. Sprague and Ballard [22] proposed a rein-
forcement learning method that combines action selection and
visual perception in a sidewalk navigation task. Navalpakkam
and Itti [23] optimized the integration of BU cues for tar-
get detection by maximizing the signal-to-noise ratio of the
target vs. background. Peters and Itti [24] computed a task-
dependent map based on scene gist and gaze in a video games
scenario. Judd et al. [25] trained a linear SVM taking some
image features and human fixations to define salient locations.
Elazary and Itti [26] proposed a more flexible model that can
concurrently select the best features to guide attention and
adjust the width of feature detectors. However, in contrast
to all these previous attempts, the definition of our model is
general and independent of the application or scenario, and
may therefore be easily adapted to any scenario of application.

On the other hand, bayesian models are characterized by
their capacity to learn from data, taking advantage of data
statistics to model the underlying attention process and al-
lowing to obtain interpretable relationships between data and
visual fixations. Zhang et al. presented in [27] a probabilistic
model that defines saliency as the pointwise mutual informa-
tion between BU local features and TD search target features.
Li et al. [28] proposed a multi-task learning approximation
for visual attention in video, where different ranking functions
for fusing BU and TD maps were learned depending on the
scene content. Our design, instead, models visual attention at
each spatial location as a logistic regression over the learned
intermediate sub-tasks rather than over the features themselves.

CNNs, the current dominant paradigm for many supervised
tasks in computer vision, have been also tested for visual
attention achieving promising results, mainly in the still image
domain. Among the first attempts to rely on deep learning
for saliency estimation, it should be mentioned the use of
convnet layers as feature maps carried out by Vig et al. in
[29], and the SALICON fine- and coarse-scale model [30].
The latter introduced a large-scale dataset for training new
models, annotated by means of a mouse-tracking procedure.
These supervised schemes involve training end-to-end models
according to a loss function, and unify feature extraction,
fusion and saliency prediction in a single structure. This makes
more challenging the analysis of these stages, due to the

abstract nature of representations at the deepest layers of these
strategies. Moreover, it has been reported that they still miss
some key elements [31], mostly related to misdetections of
people, actions and text, and the relative importance assigned
to them when they take place simultaneously. Hence, although
their capability of discovering discriminant high-level visual
features is out of any doubt, it is therefore necessary to
clarify the relationship between the feature maps derived from
CNNs and the psychophysical stimuli that guide attention.
This implies the development of complementary modules able
to provide this mapping, such as the hierarchical method
presented in this article, which facilitates the integration with
such neural network schemes. Indeed, our intermediate sub-
task level can be placed straightforwardly over the top layers
of a deep network, as shown in the conducted experiments. To
do this, we make use of the features derived from a recently
released deep contrast network for salient object detection with
pixel-level accuracy [32]. It should finally be pointed out that
only a few works have drawn on deep learning to tackle the
estimation of visual attention in videos, finetuning models on
the optical flow estimated from static images [33], studying car
driving-related attentional mechanisms [34] and recognizing
human activities [35].

III. VISUAL ATTENTION TOPIC MODEL

In this section we describe in detail the system proposed
for visual attention in video, which we have called visual
Attention TOpic Model (ATOM), where a set of features, such
as the ones introduced in the previous section, is used to learn
several related sub-tasks. These sub-tasks automatically lead
the attention of the system to the most appealing areas of a
scene.

A. Model overview

Our generative model is supported by the following as-
sumption: Task- or context-driven visual attention in video can
be modeled as a mixture of several sub-tasks which, in turn,
can be represented as combinations of low-, mid- and high-
level spatio-temporal features obtained from video frames.
Depending on the scenario, visual attention may be attracted
by several different events. Our goal is not to detect these
events of interest for a particular application, but to efficiently
guide the later processing to areas and time segments of special
importance in the video.

Figure 1 illustrates our hypothesis for three different sce-
narios in CRCNS-ORIG [36] database. First, looking at the
contexts given, visual attention may be attracted by different
events or elements in the scene: people running and walking
in the case of Outdoor; game character and goals or items
for Videogames; and players and scoreboards in Sports. Note
that some contexts may share similar attractions, like ball,
which is present both on Outdoor and Sports videos. Our
goal is to automatically discover sub-tasks that guide later
processing to the areas where those occur, with the purpose
of making it simpler. In turn, these sub-tasks can be modeled
as combinations of spatio-temporal features. For instance, the
use of a motion feature combined with a face or pedestrians
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Fig. 1. Visual attention modeled in three different scenarios taken from CRCNS-ORIG [36] database (Outdoor, Videogames and Sports) as a mixture of
several relevant sub-tasks (e.g. “Running”, “Goal”, “Player”, etc.), associated with particular areas of special importance for observers, which are highlighted
in the example frames on the left side. Some of them may appear similarly in different contexts, such as “Ball” or “Goal”. On the right side of the figure,
the word clouds show how some sub-tasks (bold central words) are represented as a combination of features (surrounding words: intensity, motion, detectors,
etc.). Feature importance, represented by the font size of each word showing a feature, varies from one sub-task to another. For example, motion information
and pedestrian detections are more relevant for “Running”; in contrast, an object detector, along with intensity and color features are more advantageous to
represent a “Goal” in a videogame.

Fig. 2. Graphical representation of the proposed generative topic model for
visual attention. Shaded circles represent observations from frames, white
circles indicate hidden variables to be inferred, and boxes mean independent
repetitions.

detector could be useful to represent “Player” sub-task. In
contrast, a “Scoreboard” is well-defined by some intensity or
color features, together with a text detector.

Probabilistic Latent Topic Models (LTM), which have been
commonly used to extract hidden semantic structures (topics)
from text corpus, can be helpful to unsupervisely understand
large amounts of information, such as the human perception
features that are quickly and parallely processed by the brain.
Our approach involves thus a LTM which relies on the well-
known Latent Dirichlet Allocation (LDA) algorithm [37] and
some of its supervised extensions [38] [39].

First, by understanding frames as a mixture over topics,
LDA enables to interpret how they are composed in a statistical
and unsupervised way, associating each frame to multiple
topics with different proportions. In our particular scenario,

task-driven visual attention is modeled as a finite mixture over
a set of K topics, which represent the sub-tasks contributing
to model visual attention, either by attracting or by inhibit-
ing it. Note that both terms, topics and sub-tasks, are used
interchangeably in the article. In parallel, for a given video
frame It, a set of L visual descriptors f = {f1, f2, ..., fL} is
computed at each spatial location n, so that the latent topics
are in turn modeled as combinations of these features.

The original LDA is completely unsupervised, so that the
topics are learned to maximize the likelihood of a corpus, and
require of human knowledge for an intelligible analysis. In
our case, in contrast, we aim to learn how humans guide their
attention to visual stimuli and the ground-truth (GT) fixations
provided by different subjects will drive our training step.
Visual attention is thus estimated by means of a regression
model over the topic assignments.

In our previous approach [13], Supervised Latent Dirichlet
Allocation (sLDA) was used to predict a continuous response
variable gn (the visual attention) for each spatial location n ∈
Nt in a frame It. In this work, we decide to replace this
linear regressor by a logistic one, in order to automatically
align the topics discovered from frames to the information
gathered in GT binary fixation maps. This model draws on the
Dirichlet-Bernoulli Alignment (DBA) introduced in [39]. Let
us note that the latent nature of the topics remains unchanged
in our supervised model, as the human fixations used in the
training phase are not supervising the topics but, instead, an
additional binary response variable which is computed as a
logistic regression over the topic proportions.

The proposed ATOM involves the following generative pro-
cess for each frame It in a video corpus I = {I1, I2, ..., IT }.
Let us note that, for simplicity, we have removed the sub-index
t of the frame in the notation:
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1) DrawtheframeparticularproportionsθofK topics
usingacorpus-levelDirichletdistributionofparameter
α:θ|α∼Dir(α).

2) Foreachspatiallocationn∈N inaframeI:

a) Drawtopicassignmentusinga multinomialdis-
tributionoverthetopicproportionsθ:zn|θ ∼
Mult(θ).

b) Representthelocalappearanceofthespatialloca-
tionnbydrawingLvisualfeaturesusingthetopic
particulardistributionsp(fln|zn,Γznl),whereΓznl

aretheparametersofthedistributionsgiventhe
selectedtopiczn.

c) Drawthebinaryresponsevariablegnmodelingthe
visualattentionusingalogisticregression model
givenbythefollowingBernoullidistribution:

gn|zn,η∼ Be(exp(ηTzn)
1+exp(ηTzn)

), whereη isthe
parametervectorthat modelsattentionbasedon
theselectedtopiczn.

AgraphicalrepresentationofthemodelisshowninFigure
2.Intuitively,theK latenttopicsrepresentthesub-tasksthat
contributeto modelvisualattention.Parameterαrepresents
thepriordistributionoverthesub-tasks,sothatitgivesan
intuitionabouttheconfidenceinthem.Letusnotethatsome
ofthesesub-tasksmayattracthumanattentionwhereasothers
mayinhibitit. Highvaluesof αk resultin mixtures where
allsub-tasksareconsideredtoestimatevisualattentionin
everyvideoframe.Incontrast,lowvaluesofαkprovidemore
particular mixturesofsub-tasksforeachframe,beingthe
attentiondeterminedbyonlyfewprevailingsub-tasks.Hence,
foreachframeIt, wefirstgenerateaparticular mixtureof
thesetopicsθbasedonthedistributionwiththeglobaltopic
proportionsα. Onceθisknown, weanalyzethedifferent
spatiallocationsoftheframesuchthat,foreachn,wefirst
selectasub-taskbyusingtheindex-variablezn (zn isan
indexingK-dimensionalvectorwithallzerosinexceptofa1
inthepositionoftheselectedtopic).Basedonzn,wedraw
thelocalappearanceofthespatiallocationusingtheparticular
feature-topicdistributionfnl|zn,Γznl,whereΓznlstandsfor
theparametersofthedistribution.Sub-taskisthuschosenso
thatitscorrespondingdistributionparametersaretheonesthat
maximizethelikelihoodofthevisualfeaturesobservedatthis
location.Forthesakeofsimplicity,weassumethatp(zn|θ)
isindependentforalllocationsn,which makesthesolution
tractable,bothsimplifyingthedefinitionofthealgorithmand,
atthesametime,improvingthesystemefficiency.Incontrast,
otherapproachessuchas MarkovRandomFields(MRF)[40],
appliedinimagesegmentation,areabletocapturesuchspatial
constrains.Nonetheless,itshouldbenotedthatsomeofthe
visualfeaturesthatweextractforeachsampledlocation(e.g.
color,intensity,orientation,CNNs-based)considerbeforehand
thisspatialdependency. Moreover, weassumeconditional
independenceamongfeatures,sothatthejointdistribution
offeaturesforaparticulartopiccanbefactorizedintothe
individualprobabilitydistributionsp(fl|z,Γl).Finally,wealso
generatetheattentionresponsegn bycomputingthelogistic
regressionmodelovertheselectedtopics.

Incontrast,duringvariationalinference, we workonex-
pectedvalues.Thismeansthattheindexingvariablezn isre-
placedbythevariationalφn,whichnowcontainstheexpected
valuesofthetopicassignmentsgivenalocationn.Therefore,
sinceφn isavector withrealvalues(thetopicproportions
forthatsampledlocation),inpracticeeachlocationnisin
turnmodeledasthemixtureofsub-tasksthatbestexplainsits
visualappearance.

B. Guidingfeaturesextraction

Accordingtothe mostleadingpsychologytheoriesfor
computationalattentionsystems[10][11],differentsimple
featuresareearlyandpre-attentivelyprocessedinparallel
toguidevisualsearchinthehumanbrain.Selectivevisual
attentionisbuiltonwhatitiscalledtheearlyrepresentation,a
setofconspicuitymapsrelatedwithsomeelementaryfeatures
suchascolor,orientationormotion.Thesetopographicalmaps
donotonlysurroundphysicalattributes,butalso maybe
explainedasrelationalaspectsofthesephysicalcharacteristics.
We mayevenguideourattentionbyfocusingon mid-and
high-levelfeaturessuchassymmetry,facesortext.

Motivatedbythegeneralconclusionsofthesetheories,
ATOM mayoperateoveragreatnumberofdiversefeatures.
Depending ontheir nature,they may be modeled using
variousprobabilitydistributions:e.g.normal,exponential,
discrete, etc.Itshould beremarkedthat our modelis
notfeature-dependent,sothat any kind offeature can
beincorporated byselectingtheappropriate distribution.
Furthermore,foreachapplicationscenarioandbasedon
human fixations, our model will automatically discover
whichparticularfeaturesare moreandlessdiscriminant
to modelattentionandcorrespondinglyassignappropriate
parameterstotheirdistributions.Hence,onecouldincludea
broadgeneralsetoffeaturesasthemodelwillautomatically
diminishtheinfluenceofthosethatdonotguidetheattention
inaparticularcontext.Intheexperimentscontainedinthis
paper,atotalsetof18featureshasbeenconsidered.Forthe
sakeofcompleteness, webrieflydescribethefeaturesand
theircorrespondingdistributionsinthefollowingsections.
Some ofthefeatures are handcrafted and allow usto
performa meaningfulinterpretationoftheestimatedvisual
attention;other,suchasthosederivedfroma CNNsare
lessinterpretablebuthelptoimprovethesystemperformance.

1)Basicandnoveltyspatio-temporalfeatures
Firstly,wemakeuseoftheconspicuitymapsprovidedbyItti
etal.in[19]toconsiderthreecommonly-usedearlyvisual
features:color(C),intensitycontrast(I)andorientation(O).
Then,theopticalflowmethodintroducedin[41]isappliedto
obtain motionvectorsforeachspatiallocationninagiven
frame.After,wecomputetwo mapsbasedonthem:velocity
(M)ormotionmagnitudeMnt

(calculatedusingtheL2-norm),
andacceleration(A),whichisitsabsolutederivativeAnt

=
|Mnt

−Mnt 1
|.

Moreover,thoseregionsofthescenethatcontinuallychange
mayalsoattracttheattentionofobservers.Inordertohigh-
lightthem,noveltyis modeledbyhandlingcoherence-based
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Fig. 3. Object-based feature maps computed for example frames taken from
TVNews (a, b, c, d) and TalkShows (e) categories from CRCNS-ORIG
[36] database. (Left) Human fixations do not cover the whole object, but
concentrate on particular areas/parts of the objects. (Right) Consequently, and
based on the detected bounding box, we have divided the image into a set of
subregions r = 0...R. Some of them (r > 0) divide the object into several
cells (9 for frontal (F) and profile faces (PF), and upper bodies (B); 3 for
pedestrians (P) and 12 for text (T)). Moreover, an additional subregion r = 0
is considered for the background, covering the rest of the image. Overlay
heat maps highlight subregions where probabilities of each object for fixated
points (p(r|g = 1), being g ∈ {0, 1} the ground truth variable indicating if
the spatial location attracts or inhibits the attention) are substantially higher
than those for non-fixated points (p(r|g = 0)). Although the prior probability
of objects is fairly lower than the probability of background in the database, it
can be seen that objects are quite attractive for observers, due to the significant
probability of internal cells given fixated locations.

features, which analyze the distribution of pixel values along
space and time to detect areas where dispersion is large. To do
this, we rely on the work done in [42], extracting spatial (SC),
temporal (TC) and spatio-temporal (STC) coherence maps.
For the sake of simplicity, we take the variance as scattering
measure for all maps. In total, 6 maps are computed: three over
the pixel intensity values and three over the motion phase θMn .

All these features, which carry continuous values, are
modeled using a Gaussian probability density function.

2) Camera motion modeling
Camera motion may also influence viewers regarding a video.
Indeed, as seeing in previous studies [43], observers tend to
follow the camera motion direction to draw their attention to
the new information and objects that emerge in the camera
view.

First, let us introduce the notation: xn is a 2D vector with
spatial coordinates x and y associated to the spatial location
n used along the paper. Hence, the visual attention based

on camera motion is modeled by means of a 2D Normal
distribution over the spatial coordinates N(czn � u,Σzn),
where u is the vector modeling the camera motion as a simple
translation whose values are computed from a parametric
similarity motion model; � stands for the Hadamard product
between vectors, and czn is the vector of parameters that
establishes a relation between the camera motion and the
predicted position of the attention, and is learned during the
training process. The second parameter Σzn , which controls
the spatial extent of the Gaussian distribution, has been
empirically set to Σzn = diag(0.25) in order to cover a
sufficiently wide area in the scene.

3) Object-based features
In our experiments, we have included detectors for some
general-purpose objects that tend to attract visual attention.
In particular, cascade object detectors based on the Viola-
Jones algorithm [44] are used to detect people’s frontal (F)
and profile faces (PF), upper bodies (B) and pedestrians (P),
and a detector working on the Harris corner response [45]
is used to detect text (T). However, many detectors for other
visual concepts may also be included in our model without
effort.

We use the output of these detectors (bounding boxes)
to generate high level spatial feature maps. Visual attention
usually points to particular locations within the objects, so
this fact has to be considered when modeling these features.
Since the size of the detected bounding boxes is often
large, if we use a 2D Gaussian centered in the bounding
box that contains a particular object, for instance, we are
notably emphasizing the center of the object with respect to
its surroundings. However, attention may be fixed at some
elements of the object and not only at its center, such as in
the case of faces or pedestrians, where subjects often look
at the eyes or upper body part, respectively. Rather than
directly considering the detected boxes as the feature maps,
we have used them to generate more intelligent discrete
spatial distributions. As shown in Figure 3, given a detected
bounding box, we consider a non-uniform grid with R+1
cells: R cells (r > 0) subdivide the detected box into r small
subregions, and an additional subregion is considered for
the background (r = 0). Hence, for a given object l being
detected (we keep l as the index of the features, in this case
object detections), we model a discrete distribution over the
R+1 defined cells as p(r|zn, βlzn), where r is a cell in the
grid (which is object dependent), and βlzn are the parameters
of the discrete distribution for the object l and the topic
zn. The distributions are then factorized for every object
category and instance (in case that more than one object of
a given category are detected on the same frame). By means
of discrete spatial distributions that divide objects in several
sub-regions, we are able to learn which parts of the object
are more attractive, taking advantage of this knowledge to
provide more accurate estimations of visual attention.

4) CNNs-based features
Finally, we make use of 6 features derived from a CNN for
salient object detection. The reason is twofold: first, they allow
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modeling more general objects than those identified by previ-
ously mentioned detectors; and second, they demonstrates the
ability of our model to find efficient and diverse combinations
of features that help to understand how visual attention works
in a given scenario. Features have been drawn from the Deep
Contrast Network recently introduced by Li et al. in [32]. We
employ the models trained by the authors on a different image
dataset, and use the feature maps of the penultimate layer
to obtain features modeling general objectness. These feature
maps fl ∈ [0, 1], l = {1...6} are then modeled using Gaussian
distributions, as we did with the aforementioned basic and
novelty spatio-temporal features.

C. Inference

This section explains the inference process of our proba-
bilistic model. As in the original LDA [37] and its exten-
sions [38] [39], exact inference is not possible due to the
coupling between the variables θ and z, which prevents from
inferring the posterior distribution of the parameters given the
data. Therefore, we propose to use a simplified variational
distribution q (that is tractable) and mean-field variational
inference, so that the Kullback-Leibler divergence between
the variational distribution q and the posterior distribution is
computed. The proposed variational distribution is as follows:

q(θ, z|γ, φ1:N ) = q(θ|γ)
N∏
n=1

q(zn|φn) (1)

that incorporates two new variational parameters: φ, which is
the parameter of a multinomial distribution q(zn|φn), and γ,
the parameter of a Dirichlet distribution q(θ|γ). This optimiza-
tion is equivalent to maximize the lower bound (ELBO) over
the log-likelihood of all the frames in the corpus. In particular,
using Jensen’s inequality, the ELBO of the log-likelihood of
a frame can be expressed as:

log p(f1:N,1:L, g1:N |α,Γ1:K,1:L, η) ≥ Eq[log p(θ|α)]

+
N∑
n=1

Eq[log p(zn|θ)] +
N∑
n=1

Eq[log p(fn,1:L|zn,Γ1:K,1:L)]

+
N∑
n=1

Eq[log p(gn|zn, η)] +H(q) (2)

where Eq[·] and H(·) are, respectively, the expectation over
the variational distribution q and the entropy of a distribution.

The first two terms of Eq. (2) and the entropy of the
variational distribution are identical to the corresponding terms
in the ELBO for unsupervised LDA and are described in [37].
The third term is the expected log probability of the data
given the related topic model parameters. As was mentioned
in Section III-A, we assume conditional independence among
features. In the following paragraphs, we particularize this
expression for the considered distributions.

If the feature map fnl is modeled with a univariate Gaussian
distribution then, Γ1:K,l ∼ {µ1:K,l, σ

2
1:K,l} such as for basic

and novelty spatio-temporal features or CNN-based features,
the equation for this term is:

Eq[log p(fnl|zn,Γ1:K,l)] = −
K∑
k=1

φnk log(σkl
√

2π)

−
K∑
k=1

φnk
(fnl − µkl)2

2σ2
kl

(3)

where φnk is the probability that the location n has been drawn
by the topic k.

In the case of camera motion features, the distribution is
a multivariate Gaussian p(xn|zn, µk,Σk) with µk = ck � u.
However, due to the diagonal nature of the covariance matrix
Σk we can decompose it into two independent univariate
Gaussians and apply the previous expression.

In contrast, if the feature is modeled as a discrete probability
distribution over cells r in a grid, as happens for objects-based
features, the expression is:

Eq[log p(rn|zn, βlzn)] =
K∑
k=1

φnk log(βklrn) (4)

where rn stands for the region in the non-uniform grid defined
for the object l that contains the location n, βklrn is the value
of the of the discrete distribution in that region for the object
l and the topic k.

The fourth term includes the visual attention binary response
variable gn and is drawn as a logistic regression model over
the topic assignment zn with parameter η:

Eq[log p(gn|zn, η)] = Eq

[(
gn −

1

2

)
ηT zn

]
−Eq

[
log

(
exp

(
ηT zn

2

)
+ exp

(
−ηT zn

2

))] (5)

where zn is the vector of topic proportions znk in the loca-
tion n. By taking second derivatives, it can be noticed that
the second term above is a convex function in the variable
ηT

2

z2n = (ηT � ηT)(zn � zn), so we can bound it by using
the lower bound for logistic function, which is the first order
Taylor expansion in the variable ηT

2

z2n:

log

(
exp

(
ηT zn

2

)
+ exp

(
−ηT zn

2

))
≥ −ξn

2
− log(1 + exp(−ξn))

− 1

4ξn
tanh

(
ξn
2

)
Eq

[
ηT

2

z2n − ξ2n
]

≈ −ξn
2
− log(1 + exp(−ξn))

− 1

4ξn
tanh

(
ξn
2

)
(ηT

2

φn − ξ2n)

(6)

where ξn is an additional variational parameter associated to
each point n.

Computing the derivatives of the KL divergence with respect
to the parameters and setting them equal to zero allows us
to obtain the update equations for the variational procedure.
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Fig. 4. Processing pipelines of the proposed approach. First, in the learning phase, we learn the optimal values for the parameters associated to the K
sub-tasks that model visual attention. A Non-uniform Sampling (NUS) strategy allows to generate training datasets that balance the number of attracting and
non-attracting points. Then, in the test phase, attention is predicted for each frame at N uniformly spaced locations.

In particular, in the variational E-step we must update the
variational parameters:

φnk ∝
∏LD

l=1 βklrn∏LC

l=1 σkl
exp

[
Ψ(γk)−Ψ

 k∑
j=1

γj

+

(
gn −

1

2

)
ηk −

1

4ξk
tanh

(
ξk
2

)
η2k−

LC∑
l=1

(fnl − µkl)2

2σ2
kl

]
(7)

γk =αk +

N∑
n=1

φnk (8)

ξnk =ηkφnk (9)

being LC and LD the number of continuous (Gaussian) and
discrete features respectively, and L = LC + LD the total
number of features. Note that we have used the expression
Eq[log(p(θk|γ)] = Ψ(γk)−Ψ

(∑k
j=1 γj

)
, where Ψ(·) is the

digamma function.

In the M-step, we maximize the corpus-level ELBO with re-
spect to the model parameters Γ1:K,1:L, η, in order to compute
their optimal values.

First, parameters µkl and σ2
kl are computed for each Gaus-

sian feature l and topic k.

µkl =
1

∆kl

T∑
t=1

Nt∑
n=1

φtnkftnkl (10)

σ2
kl =

1

∆kl

T∑
t=1

Nt∑
n=1

φtnk(ftnkl − µkl)2 (11)

where ∆kl =
∑T
t=1

∑Nt

n=1 φtnk is the normalization factor.
In the case of camera motion, as mentioned above, the

parameter is the vector ck = (ckx, cky) that multiplies the
camera motion vector u = (ux, uy) to determine the mean of
the Gaussian distribution:

ck =

∑T
t=1

∑Nt

n=1 φtnkutxn∑T
t=1

∑Nt

n=1 φtnkut
2

(12)

where xn = (xnx, xny) stands for the spatial coordinates
vector of the location n.

Finally, for the case of object-based discrete features, the
probabilities βklr of the regions r defined on the object-
detector l and for every topic k are:

βklr ∝
T∑
t=1

Nt∑
n=1

φtnk1[rnl = r] (13)

where 1[rnl = r] means that we have a 1 just in case the
region of the point n for the detector l is r (otherwise we have
a zero). It is worth noting that we have added the subindex t
when necessary to indicate the frame number in the corpus.
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Furthermore, during the training step, we use the GT
response value gtn of all points in the corpus to learn the
parameter of the logistic regression model:

ηk =
2
∑T
t=1

∑Nt

n=1 φtnk(gtn − 1
2 )∑T

t=1

∑Nt

n=1
φtnk

ξnk
tanh( ξnk

2 )
(14)

D. Learning sub-tasks for visual attention estimation

As in other supervised approaches, we can distinguish two
main stages in our framework, as shown in Figure 4. First,
in the learning phase, optimal values for the parameters that
maximize the ELBO of the log-likelihood are learned. As we
need to learn from annotated data, we first describe how we
sample this data from the annotated video datasets. Since we
are on a highly unbalanced scenario, in which the areas that at-
tract visual attention are strongly less prominent that those that
inhibit it, we need to prevent the later dominating the learning
process, which might lead to a poor performance. For that
end, we have used the Non-uniform Sampling (NUS) strategy
proposed in [46], which allows to generate training datasets
that balance the number of attracting and non-attracting points.
While the first are selected based on the GT masks computed
from human fixations for a given video frame, non-attracting
points are sampled from those spatial locations which have not
been fixated by viewers in any frame of the same video. In
addition, the sampling process also provides the ground truth
binary response gn for each sampled spatial location (gn = 1
for attracting points, and zero otherwise).

Once models are trained, in the test phase, attention is
predicted at uniformly spaced locations n in frames. For that
end, we remove all terms relating to the supervision (variable
g) and estimate the visual attention maps using the expected
value of the logistic regression over the topic assignments:

E[gn|fn,1:L, α,Γ1:K , η] ≈ exp (ηTφn)

1 + exp (ηTφn)
(15)

In addition, knowing that given a particular frame visual
attention is usually focused on small areas of the size occupied
by fixations, a histogram equalization procedure is carried out
to highlight the most significant regions detected, which helps
to improve the system performance.

IV. EXPERIMENTS

A. Experimental design

Database
The purpose of our experiments is to demonstrate the ability
of the proposed ATOM to learn meaningful sub-tasks that
can be used to understand what guides visual attention in
different contexts, drawing conclusions on whether observers
are either driven by similar generic sub-tasks or, in contrast,
by certain specific tasks related to each particular scenario.
For this reason, we have selected the well-known freely-
accessible CRCNS-ORIG [36] as benchmark dataset. The
database contains eye movement recordings from eight distinct
subjects freely watching 50 different video clips (over 46,000
video frames, 25 minutes total, 640 × 480). Eye traces have

been obtained using a 240 Hz ISCAN RK-464 eye-tracker. As
set out in Figure 6a), clips include complex video stimuli that
can be divided into seven categories: Outdoor, Videogames,
Commercials, TV News, Sports, Talk Shows and Others. Eye
fixations of at least 4 subjects are provided for each clip.
The dataset was delivered some years ago with the same
intention pursued with our analysis, and has been employed to
evaluate a lot of state-of-the-art saliency models. However, to
our knowledge, none of them had attempted so far to offer a
data interpretation such as the one resulted from our approach.

Hence, in order to both assess the performance and gain
insight into the latent information provided by the proposed
probabilistic method for visual attention estimation, we will
compare two different approaches: a) a context-generic (C-G)
model trained using frames belonging to videos in all the
categories; and b) 7 context-aware (C-A) models trained on
those videos belonging to each category or genre.

Evaluation of performance
The performance over every video in the dataset is evaluated
by conducting a 4-fold cross validation procedure, so that at
each iteration some videos are picked for evaluation. For the
purpose of avoiding over-fitting, all frames of a video are
always grouped together in the same set (train or test).

Bylinskii et al. present in [47] a comprehensive study about
visual attention models evaluation, where recommendations
for metric selections under specific assumptions and for
specific applications are made. According to this extensive
analysis, we have selected two suitable metrics to present our
results on ground truth fixations prediction. First, for the sake
of historical reasons, a ROC-based score is included, which
is the Shuffled Area Under Curve (sAUC) obtained from the
implementation detailed in [48]. Given a video frame, this
measure gives less credit to common fixation positions for
correct prediction by choosing fixations from different videos
as false positives (FP), in such a way that center-bias effects
of the spatial distribution of eye fixations are eliminated.
However, attention maps that place different amounts of
density at fixated locations receive similar scores. The same
shuffling technique is applied to the Shuffled Normalized
Scanpath Saliency (sNSS) metric in [49], which is the second
measure we have chosen. A high number of FP drives the
overall sNSS down, which makes this metric an interesting
supplement to the classical AUC scores. In order to evaluate
the performance of visual attention models in a particular
video, a probabilistic map that consists of fixations in frames
from all other videos in the dataset is used as shuffle map
for both scores. 95% confidence bounds are provided for the
metrics used.

Model initialization
Due to the stochastic nature of our approach, a correct
initialization of the parameters is important to both fasten
the convergence and reach an optimal model. As the goal is
to learn sub-tasks that either attract or inhibit attention, we
initialize basic, novelty and CNNs-based feature distributions
as follows: we initialize some topics that inhibit and other that
attract visual attention, with µkl = 0 and µkl = 1, respectively
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(b) Outdoor
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(c) Videogames
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(d) TV News

Fig. 5. Three most prominent attraction (AT) and inhibition (IT) sub-tasks inferred by (a) context-generic and (b) Outdoor, (c) Videogames and (d) TV
News context-aware models learned based on CRCNS-ORIG [36] database. Sub-tasks are represented in the graphs as combinations of some of the features
described in Section III-B: basic and novelty features, such as color (C), intensity contrast (I), orientation (O), velocity (M), acceleration (A), luminance
spatial coherence (SC (Lum.)), motion spatial coherence (SC (Mot.)), lumincance temporal coherence (TC (Lum.)), motion temporal coherence (TC (Mot.)),
luminance spatio-temporal coherence (STC (Lum.)), motion spatio-temporal coherence (STC (Mot.)); and object-based features, such as frontal (F) and profile
faces (PF), upper bodies (B), pedestrians (P) and text (T).

(remember that our features are maps in the range [0, 1]). Then,
in order to provide initial variances for the topics, we compute
two separate sets of variances with respect to µkl = {0, 1},

from non-attracting and attracting locations respectively. Then,
we run a separate k-means over the variance values and obtain
the corresponding K centroids, one per topic. For camera
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motion features, the parameters ck are randomly initialized
with values close to 0 whereas, as we have already mentioned,
Σk is empirically set to Σk = diag(0.25). Finally, discrete dis-
tribution features for object detection are initialized uniformly
for every region in the non-uniform grid.

Last but not least, the main parameter of the proposed model
is the number K of sub-tasks or topics that contribute to model
visual attention. For simplicity, we have used the same number
of attracting and inhibiting topics in our initialization. As indi-
cated in the next sub-section, K = 60 is the number of topics
used for the rest of the experiments. Finally, initial global topic
proportions α have been empirically set to αk = 0.01.

B. Visual attention as a mixture of sub-tasks for generic and
context-aware models

The most outstanding outcome of our probabilistic approach
is determined by the topics inferred, which effectively help to
interpret how visual attention works. Firstly, by means of the
proportions in which those are blended, we can establish which
sub-tasks are more prevailing for guidance. We have statisti-
cally estimated the importance of each topic by examining
the value ηk of the logistic regression model and the topic
proportions φnk obtained for each spatial location n evaluated
on the test set, as both variables are linearly related to the
model response which generates the visual attention map. In
particular, the relevance score of each sub-task k is computed
as:

Sk = ηk

N∑
n=1

φnk (16)

Scores are later normalized between [−1, 1] to simplify
the analysis. Secondly, regarding the distribution parameters
learned for features considered as input, we can further study
the meaning of sub-tasks, providing useful information about
the most conspicuous regions in a given scenario. For the
sake of interpretability, it should be noted that we have not
considered CNNs-based features in this analysis. Besides,
Gaussians’ means are not learned and remain fixed in µkl = 0
and µkl = 1 during the whole inference process for those
topics inhibiting (IT) or attracting attention (AT), respectively.
Furthermore, the camera motion distribution has been also
removed from the analysis as it has been observed that there is
not a strong influence of this feature in any of the categories,
since parameters ck learned for the most prevailing topics
have all similar values. Under this simplified scenario, we can
evaluate the relevance of basic and novelty features, using their
learned standard deviation values σkl :

SCkl =
σFl
σkl

(17)

with values in the range [0,+∞). Given a sub-task k, a
feature l will be representative if its standard deviation σkl
is lower compared to the deviation σFl measured on areas that
correspond with the topic type F (fixated areas if the topic is
attracting attention, and viceversa).

Moreover, scores for object-based features are calculated by
computing the cumulative probability of the cells that lie inside
the detected bounding box (r > 0, excluding the background
cell):

SDkl =
R∑
r=1

βklr (18)

with values between [0, 1].
Scores obtained by the three most noteworthy attraction

and inhibition sub-tasks for three video genres are shown
in Figure 5. Moreover, significant sub-tasks deduced by the
context-generic model are provided for the sake of comparison.
Although the number of topics experimentally determined is
quite high (K = 60), we have observed that only few of them
are responsible of guiding attention most of the time, whereas
the rest are intended to refine the estimation, specially in the
less prevalent sequences.

As can be seen, different sub-tasks are determined to model
visual attention in each scenario, existing an appreciable
contrast between well-separated categories such as Outdoor
or TV News, which involve distinctive actions. While context-
generic model is adjusted to the most prominent events in
the whole database, which consist of faces noticeable by their
color and intensity, and motion objects, context-aware models
have the ability of attaining more particular and explainable
activities. Motion and acceleration features are relevant in
Outdoor and Videogames sub-tasks, which could be related
to people or characters walking or running. In contrast, faces
and texts are more attractive and predominant in categories like
Commercials, TV News and Talk Shows. Both motion and faces
are eye-catching in Sports videos, which could be understood
as a combination of these two first mentioned types. Last
but not least, low values of spatial and temporal coherency
features are mostly frequent in IT, which implies reducing the
attentional response in usual and stable locations over space
and time.

C. Results on the CRCNS-ORIG database

In this second set of experiments, CNNs-based features are
included and the ATOM model learns unconstrained Normal
distributions without fixating the means. Results obtained for
the two versions of our method in each category are provided
in Figure 6b). As can be seen, the context-aware models
match or outperform the generic approach in all genres.
Without considering Others category, which is more diverse
and contains a synthetic saccade test video, best scores are
obtained for TV News and Talk Shows genres, due to the proper
operation of object detectors incorporated as input for the
model, as shown in some of the examples provided in Figure 7.
Scores achieved for Outdoor and Videogames videos are also
remarkable, due to the strong influence assigned to motion-
related features. This reinforces the idea that, depending on the
context, certain particular sub-tasks aid to guide visual atten-
tion. This can be also noticed if we look at the results obtained
in a category whose associated videos are not closely related,
such as Others, where it has been hard to find out meaningful
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Context # clips Frames

Outdoor 17 8, 357

Videogames 9 15, 809

Commercials 4 2, 618

TV News 7 8, 071

Sports 5 4, 851

Talk Shows 4 4, 244

Others 4 2, 539

TOTAL 50 46, 489
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Fig. 6. (a) Categories into which the CRCNS-ORIG [36] database is divided. (b) Results obtained by the proposed context-generic and context-aware ATOM
models, which consist of K = 60 topics.
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Fig. 7. Visual attention maps obtained by ATOM for some example frames
from CRCNS-ORIG [36] database. Red boundaries highlight high-density
regions of human fixations in the GT map. (a) Original frames. (b) Context-
Generic. (c) Context-Aware.

topics. In fact, the results in this case for the context-generic
model are higher, probably because it has been trained on
a wider set of videos similarly related than those used to
obtain its corresponding context-aware approach, which might
have allowed for a better generalization. Therefore, it can
be concluded that it is necessary to establish well-defined
application scenarios where to determine these feature-based

representations. In order to provide a fair comparison, we draw
on the same number of topics for each of the categories in
the dataset chosen, although it has been observed that the
performance depends on the complexity of the scenarios. If
we compare the average performance of context-aware models
with respect to the result obtained by the context-generic
approach, there is an improvement of 4.1% in terms of sNSS
and 1.2% in terms of sAUC, which is closer to the upper
threshold given by H50 score. Thus, we can state that specific
context-aware representations of visual attention learned over
smaller training sets (the training videos belonging to each
category) work better than generic models over larger datasets
(including all video categories). Based on these results, from
now on we will use the context-aware version of our algorithm
to provide a comparison with other approaches in the state-
of-the-art.

D. Comparison with state-of-the-art methods
With the aim of assessing the performance of our approach

in comparison with other methods available in the state-of-
the-art, we have selected seventeen static and dynamic visual
attention models, which are representative of the existing
diversity for visual attention prediction: we have included both
BU and TD or learnable models, a model that uses CNNs to
predict, etc., as well as three reference models introduced in
[50] (H50, CHANCE, CENTER). Parameters used are the ones
set as default by authors. As can be verified from CENTER
and CHANCE baselines, all metrics included in the analysis
are not affected by center bias effect.

Table I contains all the results obtained for the assessed
methods, together with those reached by the system introduced
in this article (ATOM). We also include on the list the first
approach we presented in [13], which make use of a linear
regressor to estimate visual attention instead of the logistic
regressor currently employed. Features and number of topics
(K = 40) taken for this previous configuration are those
reported in [13].

The improvement achieved by our model with respect to
very recent approaches such as AWS-D [49], DCL [32],
WMAP [51] or ICL-D [52] is statistically significant. More-
over, it is also visually noticeable in some intricate cases, as
those shown in Figure 8, with scenes showing crowds, multiple
similar concepts that hamper visual guidance or quick actions.
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS IN THE CRCNS-ORIG

[36] DATABASE.

Model Learning
sAUC sNSS

mean (C.I.)Rank mean (C.I.)Rank

ATOM YES 0.705 (0.703,0.707)1 0.362 (0.359,0.365)1

AWS-D [49] NO 0.700 (0.698, 0.702)2 0.322 (0.319, 0.325)3

DCL [32] YES 0.684 (0.682, 0.686)3 0.323 (0.320, 0.326)2

AWS [53] NO 0.675 (0.674, 0.677)4 0.281 (0.278, 0.285)4

WMAP [51] NO 0.670 (0.669, 0.672)5 0.236 (0.232, 0.239)12

Hou and Zhang [54] NO 0.669 (0.667, 0.671)6 0.260 (0.257, 0.263)7

DCL+ [32] YES 0.666 (0.665, 0.668)7 0.255 (0.251, 0.258)8

ICL-D [52] NO 0.666 (0.665, 0.668)8 0.217 (0.214, 0.220)14

PQFT [55] NO 0.662 (0.660, 0.663)9 0.243 (0.240, 0.246)11

Goferman [56] NO 0.661 (0.659, 0.662)10 0.263 (0.260, 0.266)6

SUN [27] YES 0.654 (0.652, 0.655)11 0.251 (0.248, 0.254)9

AIM [2] YES 0.653 (0.652, 0.655)12 0.270 (0.268, 0.273)5

Torralba [57] NO 0.648 (0.646, 0.650)13 0.251 (0.248, 0.254)10

Itti (ST) [19] [20] NO 0.634 (0.632, 0.636)14 0.217 (0.214, 0.220)15

Fernández-Torres [13] YES 0.628 (0.626, 0.630)15 0.218 (0.215, 0.221)13

SDSR [58] NO 0.627 (0.625, 0.628)16 0.129 (0.126, 0.132)17

GBVS (ST) [20] NO 0.621 (0.619, 0.623)17 0.182 (0.179, 0.186)16

ESA-D [59] NO 0.541 (0.539, 0.543)18 0.075 (0.072, 0.078)18

H50 NO 0.800 (0.799, 0.802) 0.679 (0.677, 0.681)

CHANCE NO 0.500 (0.500, 0.500) −0.000 (−0.000, 0.000)
CENTER NO 0.509 (0.507, 0.511) 0.057 (0.054, 0.060)

a) b) c) d) e) f)

Fig. 8. Visual attention maps generated by some of the most outstanding
methods in the state-of-the-art for some intricate example frames taken from
CRCNS-ORIG [36] database. Red boundaries highlight high-density regions
of human fixations in the GT map. (a) Original frames. (b) ATOM. (c) AWS-D
[49]. (d) DCL [32]. (e) WMAP [51]. (f) ICL-D [52].

Finally, we evaluate the computational time of the test phase
for all methods on a system with an Intel Core i7-6700K CPU
with 4.00GHz. Regarding our approach, we should distinguish
between the learning and the test phase. Both phases involve a
feature extraction stage that takes 5.81s per frame. Time spent
in the learning phase depends on the number of topics of the
model trained and the amount of input frames. For instance,
training a model with K = 60 topics and ∼ 3000 frames
would take ∼ 45min. This time can be reduced if the number
of topics is decreased to K = 40 (∼ 32min) or K = 20
(∼ 18min), which would slightly decrease the performance.
Then, in the test phase, the average time per frame is only
0.157s, which is competitive compared to those obtained by
the two next best methods, AWS-D [49] (0.075s) and DCL
[32] (0.2s).

E. Where we are: model strengths and limitations

Despite the improvement reached by the proposed model
over the state-of-the-art and the compelling information it
provides, we are still far from reaching human capacity of
almost immediately selecting the most essential elements and
areas to reach a full understanding in a given scenario, or to
solve a particular task. H50 score reflected in Table I, which is
calculated for each frame by means of a map that contains the
fixations of the 50% of subjects available, constitutes a good
realistic upper threshold to put into perspective the efficiency
of the existing approaches. Nonetheless, we advocate that the
inclusion of an intermediate level between features and visual
attention in terms of sub-tasks is a powerful way towards
comprehensible guiding representations. In order to assess the
influence of the topic models over the final result, we have
evaluated an alternative method that uses a logistic regressor
over the same set of features to directly predict visual attention.
Our topic model achieves a relative improvement of 22.3%
in terms of sNSS and 1.7% in terms of sAUC. This clearly
demonstrates that the topic-based hierarchical modeling is
useful, not only because it provides meaningful representations
of top-down visual attention, but also because it successfully
enhances the system performance.

We have demonstrated that some of the traditional basic
features used (e.g. color, orientation, motion) continue being
useful in many cases to predict visual attention in videos.
Furthermore, thanks to the object detectors introduced and
the corresponding spatial discrete distributions, we are able
to model simple but attractive concepts such as faces or text,
putting emphasis on their most noticeable elements. The high
performance achieved by these detectors in some categories
leads us to reckon the integration of large-scale hierarchical
networks for object recognition in future revisions of our
model, such as the ones evaluated in the ImageNet Challenge
[60]. On the other hand, there is also a need of a deeper
understanding of the scene, establishing relations between
recognized concepts both in the same frame or in different
frames. This would enable the system to enhance guidance
in situations where many conspicuous regions exist and it is
required to select the most significant, or even an intermediate
one (e.g. Figure 9a)); when objects are occluded during few
frames (e.g. Figure 9b)); or to determine the sequence of
objects or subjects to follow in order to interpret a scene
(e.g. Figure 9c)), among others. In other words, we pursue
the identification and modeling of sub-tasks, not only over
space but also along time.

Last but not least, it has to be mentioned the importance
of GT eye fixations, both in learning and evaluation stages.
As can be appreciated in some of the examples gathered
throughout the article, not all fixations contain useful infor-
mation to train a visual attention system, not only because
the occlusions mentioned above, but also due to errors de-
rived from eye-tracker capture or the observers’ center bias
present in numerous frames. Fixations often fall on edges,
not covering completely some objects of interest, such as
gaming characters or players, which are essential to infer
sub-tasks. Additionally, we might take into account covert
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Fig. 9. Frame sequences taken from CRCNS-ORIG [36] database to analyze
some ATOM model drawbacks and define future lines of research. Red
boundaries highlight high-density regions of human fixations in the GT map,
both in original frames and computed visual attention maps. (a) Videogames
scenario where many remarkable regions exist, making observers constantly
shift their gaze. (b) Outdoor scenario where multiple salient concepts (e.g. car,
policeman) overlap each other. (c) Basketball match, in which the sequence
of players to follow is decisive to model visual attention. (d) TV talk show,
where several quasi-static concepts appear together during a long time lapse
and estimated visual attention is either distributed among all or focused in
one of them.

attention, which is independent of eye movements and stresses
the existence of attention independent of gaze change. Hence,
techniques to filter and, if necessary, extend regions considered
as GT should be regarded in upcoming experiments. What is
more, existing evaluation metrics do not seem to be appropiate
in situations such as the one shown in Figure 9d), where many
remarkable quasi-static concepts appear together during a long
time lapse and estimated visual attention is either distributed
among all or focused in one of them. If observers’ fixations
are widely dispersed and continuously displaced between their
corresponding locations, what should be the GT taken for
each frame in this case? Should all concepts be considered
as attractive during the whole video fragment? We will seek
to address these issues in future application scenarios.

V. CONCLUSIONS

In this paper, we have presented a hierarchical probabilistic
framework to estimate and understand TD visual attention in
videos. Relying on the idea of ‘guiding representation’ sup-
ported by some of the most prevailing psychological theories
about visual attention, our ATOM model decomposes it into
mixtures of several latent topics or sub-tasks, which are in
turn modeled as combinations of low-, mid- and high-level
spatio-temporal features obtained from video frames. For that
purpose, an intermediate level between feature extraction and
visual attention computation phases is introduced, aligning the
latent discovered sub-tasks from frames to the information
drawn from human fixations. The attention response is thus
generated by computing a logistic regression model over topic
proportions. It is also worth mentioning that the definition of
the method is generic and independent of the input features,
which enables an easy adaptation to any application scenario.

The ability of ATOM of successfully learning specifically
adapted hierarchical representations of visual attention in
diverse contexts has been demonstrated on the basis of a wide

set of features. Either classical and easily interpretable feature
maps, which have been effective to extract conclusions about
the existing scenarios in the well-known CRCNS-ORIG [36]
database, or those generated by recently proposed CNNs struc-
tures, which allow to capture more complex concepts, have
aided to significantly outperform other competent methods
in the literature. Moreover, the detection of simple elements
such as faces or text, and their modeling as spatial discrete
distributions, has led to improve visual attention estimation in
certain challenging situations.

Experimental results show the advantage of obtaining com-
prehensible guiding representations to model visual attention.
However, it is still necessary to deepen in some of the stages
of the framework, carefully selecting the most meaningful
information from fixated regions in the scene, and integrating
more robust recognition and understanding techniques that
enable to identify more accurate sub-tasks over space and time.
To that end, future efforts will be directed towards task-driven
approaches, developing video databases with human fixations
to test the usefulness of the system in end-user applications.
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probabilistic topic approach for context-aware visual attention model-
ing,” in 2016 14th International Workshop on Content-Based Multimedia
Indexing (CBMI), June 2016, pp. 1–6.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[14] J. M. Wolfe and T. S. Horowitz, “What attributes guide the deployment
of visual attention and how do they do it?” Nature Reviews Neuroscience,
vol. 5, no. 6, pp. 495–501, 2004.

[15] J. M. Wolfe, “Guided search 4.0,” Integrated models of cognitive
systems, pp. 99–119, 2007.

[16] J. M. Henderson and A. Hollingworth, “High-level scene perception,”
Annual review of psychology, vol. 50, no. 1, pp. 243–271, 1999.

[17] A. Borji and L. Itti, “Defending yarbus: Eye movements reveal ob-
servers’ task,” Journal of vision, vol. 14, no. 3, pp. 29–29, 2014.

[18] C. Koch and S. Ullman, “Shifts in selective visual attention: towards
the underlying neural circuitry.” Human neurobiology, vol. 4, no. 4, pp.
219–227, 1985.

[19] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998.

[20] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in
Advances in Neural Information Processing Systems 19. MIT Press,
2007, pp. 545–552.

[21] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 185–207, Jan. 2013.

[22] N. Sprague and D. Ballard, “Eye movements for reward maximization,”
in Advances in neural information processing systems, 2003, p. None.

[23] V. Navalpakkam and L. Itti, “An integrated model of top-down and
bottom-up attention for optimizing detection speed,” in Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on,
vol. 2, 2006, pp. 2049–2056.

[24] R. J. Peters and L. Itti, “Beyond bottom-up: Incorporating task-
dependent influences into a computational model of spatial attention,”
in 2007 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2007, pp. 1–8.

[25] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict
where humans look,” in 2009 IEEE 12th International Conference on
Computer Vision. IEEE, 2009, pp. 2106–2113.

[26] L. Elazary and L. Itti, “A bayesian model for efficient visual search and
recognition,” Vision Research, vol. 50, no. 14, pp. 1338 – 1352, 2010,
visual Search and Selective Attention.

[27] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, “Sun:
A bayesian framework for saliency using natural statistics,” Journal of
Vision, vol. 8, no. 7, p. 32, 2008.

[28] J. Li, Y. Tian, T. Huang, and W. Gao, “Multi-task rank learning for
visual saliency estimation,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 21, no. 5, pp. 623–636, May 2011.

[29] E. Vig, M. Dorr, and D. Cox, “Large-scale optimization of hierarchical
features for saliency prediction in natural images,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 2798–2805.

[30] M. Jiang, S. Huang, J. Duan, and Q. Zhao, “Salicon: Saliency in
context,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 1072–1080.

[31] Z. Bylinskii, A. Recasens, A. Borji, A. Oliva, A. Torralba, and F. Durand,
“Where should saliency models look next?” in Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part V, 2016, pp. 809–824.

[32] G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016, pp. 478–487.

[33] Ç. Bak, A. Erdem, and E. Erdem, “Two-stream convolutional networks
for dynamic saliency prediction,” CoRR, vol. abs/1607.04730, 2016.

[34] A. Palazzi, F. Solera, S. Calderara, S. Alletto, and R. Cucchiara, “Where
should you attend while driving?” CoRR, vol. abs/1611.08215, 2016.

[35] X. Wang, L. Gao, J. Song, and H. Shen, “Beyond frame-level cnn:
Saliency-aware 3-d cnn with lstm for video action recognition,” IEEE
Signal Processing Letters, vol. 24, no. 4, pp. 510–514, April 2017.

[36] L. Itti and R. Carmi, “Eye-tracking data from human volunteers watching
complex video stimuli,” Dec 2009.

[37] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[38] J. D. Mcauliffe and D. M. Blei, “Supervised topic models,” in Advances
in Neural Information Processing Systems 20, J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, Eds. Curran Associates, Inc., 2008, pp.
121–128.

[39] S.-H. Yang, H. Zha, and B.-G. Hu, “Dirichlet-bernoulli alignment: A
generative model for multi-class multi-label multi-instance corpora,” in
Advances in neural information processing systems, 2009, pp. 2143–
2150.

[40] Z. Kato and T.-C. Pong, “A markov random field image segmentation
model for color textured images,” Image and Vision Computing,
vol. 24, no. 10, pp. 1103 – 1114, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0262885606001223

[41] C. Liu, “Beyond pixels: Exploring new representations and applications
for motion analysis,” Ph.D. dissertation, Massachusetts Institute of
Technology, 5 2009.

[42] D. Mahapatra, S. O. Gilani, and M. K. Saini, “Coherency based
spatio-temporal saliency detection for video object segmentation,” IEEE
Journal of Selected Topics in Signal Processing, vol. 8, no. 3, pp. 454–
462, June 2014.

[43] G. Abdollahian, Z. Pizlo, and E. J. Delp, “A study on the effect of camera
motion on human visual attention,” in 2008 15th IEEE International
Conference on Image Processing. IEEE, 2008, pp. 693–696.

[44] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1. IEEE, 2001, pp. I–511.

[45] C. Harris and M. Stephens, “A combined corner and edge detector.”
Citeseer, 1988.
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Iván González-Dı́az received the Telecommunica-
tions Engineering degree from Universidad de Val-
ladolid, Valladolid, Spain, in 1999, the M.Sc. and
Ph.D. degree from Universidad Carlos III de Madrid,
Madrid, Spain, in 2007 and 2011, respectively. Af-
ter holding a postdoc position in the Laboratoire
Bordelais de Recherche en Informatique at the Uni-
versity Bordeaux, he currently works as a Visiting
Lecturer at the Signal Theory and Communications
Department in Universidad Carlos III de Madrid. His
primary research interests include object recognition,

category-based image segmentation, scene understanding and content-based
image and video retrieval systems. In these fields, he is co-author of several
papers in prestigious international journals, two chapters in international books
and a few papers in revised international conferences.

Fernando Dı́az-de-Marı́a received the Telecommu-
nication Engineering degree and the Ph.D. degree
from the Universidad Politécnica de Madrid, Madrid,
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