Publication:
ABEONA monitored traffic: VANET-assisted cooperative traffic congestion forecasting

dc.affiliation.dptoUC3M. Departamento de Ingeniería Telemáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Network Technologieses
dc.contributor.authorGramaglia, Marco
dc.contributor.authorCalderón Pastor, María Carmen
dc.contributor.authorBernardos Cano, Carlos Jesús
dc.date.accessioned2022-11-18T09:54:14Z
dc.date.available2022-11-18T09:54:14Z
dc.date.issued2014-06
dc.description.abstractThe existing mechanisms to monitor vehicular traffic, such as the use of induction loops and cameras, are expensive to deploy and maintain. Vehicular communications opens up a new world of optimization opportunities as each vehicle can be used as a sensor to measure the fundamental variables defining the traffic state (flow, density, and speed). In this article, we propose ABEONA, a beacon-based traffic congestion algorithm and also the name of the Roman goddess of journey, which captures the current and recent-past traffic trends to forecast the near-future road conditions. Compared to the existing monitoring approaches, ABEONA allows for the estimation of the vehicular density and reduces installation and maintenance costs. ABEONA's algorithm incurs low overhead and enables drivers to use forecast traffic congestion events to replan their route accordingly.en
dc.description.statusPublicadoes
dc.format.extent8
dc.identifier.bibliographicCitationIEEE Vehicular Technology Magazine, (2014), 9(2), pp.: 50-57.en
dc.identifier.doihttps://doi.org/10.1109/MVT.2014.2312238
dc.identifier.issn1556-6072
dc.identifier.publicationfirstpage50
dc.identifier.publicationissue2
dc.identifier.publicationlastpage57
dc.identifier.publicationtitleIEEE Vehicular Technology Magazineen
dc.identifier.publicationvolume9
dc.identifier.urihttp://hdl.handle.net/10016/36043
dc.identifier.uxxiAR/0000016392
dc.language.isoengen
dc.publisherIEEEen
dc.rights©2014 IEEE.en
dc.rights.accessRightsopen accessen
dc.subject.ecienciaTelecomunicacioneses
dc.subject.otherMonitoringen
dc.subject.otherEstimationen
dc.subject.otherVANETen
dc.subject.otherSynchronizationen
dc.subject.otherCamerasen
dc.subject.otherIntelligent vehiclesen
dc.subject.otherRoad trafficen
dc.titleABEONA monitored traffic: VANET-assisted cooperative traffic congestion forecastingen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
abenoa_IEEE-VTM_2014_ps.pdf
Size:
765.08 KB
Format:
Adobe Portable Document Format