Publication:
Estimation of quantum finite mixtures

Loading...
Thumbnail Image
Identifiers
Publication date
2009-10
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
We consider the problem of determining the weights of a quantum ensemble. That is to say, given a quantum system that is in a set of possible known states according to an unknown probability law, we give strategies to estimate the individual probabilities, weights, or mixing proportions. Such strategies can be used to estimate the frequencies at which different independent signals are emitted by a source. They can also be used to estimate the weights of particular terms in a canonical decomposition of a quantum channel. The quality of these strategies is quantified by a covariance-type error matrix. According with this cost function, we give optimal strategies in both the single-shot and multiple-copy scenarios. The latter is also analyzed in the asymptotic limit of large number of copies. We give closed expressions of the error matrix for two-component quantum mixtures of qubit systems. The Fisher information plays an unusual role in the problem at hand, providing exact expressions of the minimum covariance matrix for any number of copies.
Description
14 pages, no figures.-- PACS nrs.: 03.67.-a, 03.67.Hk, 03.65.Ta, 03.65.Wj.-- Pre-print article.
Keywords
[PACS] Quantum information, [PACS] Quantum communication, [PACS] Foundations of quantum mechanics; measurement theory, [PACS] State reconstruction, quantum tomography
Bibliographic citation
arXiv:0910.1525v1