dc.contributor.author |
Abreu, L. D. |
dc.contributor.author |
Marcellán Español, Francisco José
|
dc.contributor.author |
Yakubovich, S. B. |
dc.date.accessioned |
2009-12-02T15:29:25Z |
dc.date.available |
2009-12-02T15:29:25Z |
dc.date.issued |
2008-05-15 |
dc.identifier.bibliographicCitation |
Journal of Mathematical Analysis and Applications, 2008, vol. 341, n. 2, p. 803-812 |
dc.identifier.issn |
0022-247X |
dc.identifier.uri |
http://hdl.handle.net/10016/5916 |
dc.description |
10 pages, no figures. |
dc.description |
MR#: MR2398249 (2009d:46074) |
dc.description |
Zbl#: Zbl 1139.42005 |
dc.description.abstract |
Motivated by the G.H. Hardy's 1939 results [G.H. Hardy, Notes on special systems of orthogonal functions II: On functions orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939) 37–44] on functions orthogonal with respect to their real zeros λn, n=1,2,... , we will consider, under the same general conditions imposed by Hardy, functions satisfying an orthogonality with respect to their zeros with Jacobi weights on the interval (0,1), that is, the functions f(z)=z^ν F(z), ν in R, where F is entire and, |
dc.description.abstract |
$\int_0 1 f(λ_n t)f(λ_m t)t (1-t) dt=0, α>-1-2ν, β>-1 |
dc.description.abstract |
when n≠m. Considering all possible functions on this class we obtain a new family of generalized Bessel functions including Bessel and hyperbessel functions as special cases. |
dc.description.sponsorship |
The work of LDA has been supported by CMUC and FCT post-doctoral grant SFRH/BPD/26078/2005. The work of FM has been supported by Dirección General de Investigación, Ministerio de Educación y Ciencia of Spain, MTM 2006-13000-C03-02. The work of SBY has been supported, in part, by the "Centro de Matemática" of the University of Porto. |
dc.format.mimetype |
application/pdf |
dc.language.iso |
eng |
dc.publisher |
Elsevier |
dc.rights |
© Elsevier |
dc.subject.other |
Zeros of special functions |
dc.subject.other |
Orthogonality |
dc.subject.other |
Jacobi weights |
dc.subject.other |
Mellin transform on distributions |
dc.subject.other |
Entire functions |
dc.subject.other |
Bessel functions |
dc.subject.other |
Hyperbessel functions |
dc.title |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
dc.type |
article |
dc.type.review |
PeerReviewed |
dc.description.status |
Publicado |
dc.relation.publisherversion |
http://dx.doi.org/10.1016/j.jmaa.2007.10.050 |
dc.subject.eciencia |
Matemáticas |
dc.identifier.doi |
10.1016/j.jmaa.2007.10.050 |
dc.rights.accessRights |
openAccess |
dc.affiliation.dpto |
UC3M. Departamento de Matemáticas |
dc.affiliation.grupoinv |
UC3M. Grupo de Investigación: Análisis Aplicado |