Publication:
Chiral all-dielectric trimer nanoantenna

Research Projects
Organizational Units
Journal Issue
Abstract
Chirality is a property of certain molecules, materials or artificial nanostructures, which enables them to interact with the spin angular momentum of an incident light. This provides a different optical response, depending on the incident polarization, which gives rise to chiral optical spectroscopies. However, low detection limits require an enhanced chiral light-matter interaction. Here, we propose a novel type of resonant chiral optical nanoantenna based on high-index dielectric (Cu2O) spherical nanoparticles arranged in a trimer geometry. We demonstrate both numerically and experimentally that this trimer nanoantenna exhibits resonantly enhanced optical dichroism and light hotspots, which are associated with this geometry. Moreover, we apply near-field optical microscopy to measure the near-field peculiarities of the proposed nanoantenna. The ability of changing the nanoantenna near field scattering by varying the light polarization is shown.
Description
Keywords
Dielectric metasurfaces, Resonant chiral optical nanoantenna, Chirality
Bibliographic citation
Journal of Quantitative Spectroscopy and Radiative Transfer, (2018), v. 208, pp.: 71-77.