dc.contributor.author |
Salas Martínez, Jesús
|
dc.contributor.author |
Sokal, Alan D. |
dc.date.accessioned |
2021-07-14T10:20:51Z |
dc.date.available |
2021-07-14T10:20:51Z |
dc.date.issued |
2009-04 |
dc.identifier.bibliographicCitation |
Salas, J. & Sokal, A. D. (2009). Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models V. Further Results for the Square-Lattice Chromatic Polynomial. Journal of Statistical Physics, 135(2), pp. 279–373. |
dc.identifier.issn |
0022-4715 |
dc.identifier.uri |
http://hdl.handle.net/10016/33063 |
dc.description.abstract |
We derive some new structural results for the transfer matrix of square-lattice Potts models with free and cylindrical boundary conditions. In particular, we obtain explicit closed-form expressions for the dominant (at large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as the solution of a special one-dimensional polymer model. We also obtain the large-q expansion of the bulk and surface (resp. corner) free energies for the zero-temperature antiferromagnet (= chromatic polynomial) through order q −47 (resp. q −46). Finally, we compute chromatic roots for strips of widths 9≤m≤12 with free boundary conditions and locate roughly the limiting curves. |
dc.format.extent |
95 |
dc.language.iso |
eng |
dc.publisher |
Springer |
dc.rights |
© 2009, Springer Science Business Media, LLC |
dc.subject.other |
Chromatic polynomial |
dc.subject.other |
Chromatic root |
dc.subject.other |
Antiferromagnetic Potts model |
dc.subject.other |
Square lattice |
dc.subject.other |
Transfer matrix |
dc.subject.other |
Fortuin-Kasteleyn representation |
dc.subject.other |
Beraha-Kahane-Weiss theorem |
dc.subject.other |
Large-q expansion |
dc.subject.other |
One-dimensional polymer model |
dc.subject.other |
Finite lattice method |
dc.title |
Transfer matrices and partition-function zeros for antiferromagnetic Potts models. V. Further results for the square-lattice chromatic polynomial |
dc.type |
article |
dc.subject.eciencia |
Ingeniería Industrial |
dc.subject.eciencia |
Matemáticas |
dc.identifier.doi |
https://doi.org/10.1007/s10955-009-9725-1 |
dc.rights.accessRights |
openAccess |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
279 |
dc.identifier.publicationissue |
2 |
dc.identifier.publicationlastpage |
373 |
dc.identifier.publicationtitle |
Journal of Statistical Physics |
dc.identifier.publicationvolume |
135 |
dc.identifier.uxxi |
AR/0000006537 |
dc.affiliation.dpto |
UC3M. Departamento de Matemáticas |
dc.affiliation.grupoinv |
UC3M. Grupo de Investigación: Modelización, Simulación Numérica y Matemática Industrial |