Cita:
Cabras, S. & Tena Horrillo, J. D. (2016). A Bayesian non-parametric modeling to estimate student response to ICT investment. Journal of Applied Stadistics, 43(14), pp. 2627-2642.
Patrocinador:
Ministerio de Economía y Competitividad (España) Ministerio de Ciencia e Innovación (España)
Agradecimientos:
Stefano Cabras has been supported by Ministerio de Ciencia e Innovación grant MTM2013-42323, ECO2012-38442, RYC-2012-11455, by Ministero dell'Istruzione, dell'Univesità e della Ricerca of Italy and by Regi one Autonoma della Sardegn a CRP-59903. Juan de Dios Tena Horrillo has been supported by Ministerio de Educación y Ciencia, ECO2009-08100 and ECO2012-32401.
Proyecto:
Gobierno de España. ECO2009-08100 Gobierno de España. ECO2012-38442 Gobierno de España. ECO2012-32401 Gobierno de España. RYC-2012-11455 Gobierno de España. MTM2013-42323
This paper estimates the causal impact of investment in information and communication technologies (ICT) on student performances in mathematics as measured in the Program for International Student Assessment (PISA) 2012 for Spain. To do this we apply a new metThis paper estimates the causal impact of investment in information and communication technologies (ICT) on student performances in mathematics as measured in the Program for International Student Assessment (PISA) 2012 for Spain. To do this we apply a new methodology in this context known as Bayesian Additive Regression Trees that has important advantages over more standard parametric specifications. Results indicate that ICT has a moderate positive effect on math scores. In addition, we analyze how this effect interacts with variables related to school features and student socioeconomic status, finding that ICT investment is especially beneficial for students from a low socioeconomic background.[+][-]