Citation:
Ruiz, V. M., Sirera, R., Martínez, J. M. & González-Benito, J. (2020). Solution blow spun graded dielectrics based on poly(vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. European Polymer Journal, 122, 109397.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
Ministerio de Economía y Competitividad (España) Universidad Carlos III de Madrid
Sponsor:
The authors appreciate the financial support received from the Ministerio de Economía y Competitividad [MAT2014-59116-C2]; the Universidad Carlos III de Madrid due to Fondos de Investigación de Fco. Javier González Benito [2012/00130/004] and the strategic Action in Composites materials and interphases [2011/00287/002]. Finally, we greatly thank the help given by Dr. Gustavo González-Gaitano (Dept. Chemistry, University of Navarra) conducting an extraordinary work with FTIR spectroscopy.
For the first time polymer-based graded nanocomposites were prepared by solution blow spinning, SBS, looking for new materials with optimal dielectric behavior. SBS was used as the processing method to apply layer by layer multi-walled carbon nanotubes, MWCNT,For the first time polymer-based graded nanocomposites were prepared by solution blow spinning, SBS, looking for new materials with optimal dielectric behavior. SBS was used as the processing method to apply layer by layer multi-walled carbon nanotubes, MWCNT, filled poly(vinylidene fluoride), PVDF, nanocomposites of well controlled compositions. Different configurations in terms of the disposition of layers with distinct concentration of MWCNT were considered. The structure, morphology and thermal behavior of the materials prepared were investigated so as their broadband dielectric properties in order to find and understand possible correlations. Morphological and slight structural changes were observed as a function of MWCNT concentration; however, they do not seem to be the main factors affecting the variations observed in the dielectric behavior of the materials under study. It was demonstrated that a particular design of PVDF based dielectrics, for which there is a particular gradient of MWCNT concentration, importantly increases the permittivity without increasing dielectric losses.[+][-]