A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error

e-Archivo Repository

Show simple item record

dc.contributor.author Bueno Cachadiña, María Isabel
dc.contributor.author Martínez Dopico, Froilán César
dc.contributor.author Furtado, S.
dc.contributor.author Medina, L.
dc.date.accessioned 2021-03-18T10:46:44Z
dc.date.available 2021-03-18T10:46:44Z
dc.date.issued 2018-09
dc.identifier.bibliographicCitation Bueno, M. I., Dopico, F. M., Furtado, S., Medina, L. (2018). A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error. Calcolo, 55(3).
dc.identifier.issn 0008-0624
dc.identifier.uri http://hdl.handle.net/10016/32176
dc.description.abstract The standard way of solving numerically a polynomial eigenvalue problem (PEP) is to use a linearization and solve the corresponding generalized eigenvalue problem (GEP). In addition, if the PEP possesses one of the structures arising very often in applications, then the use of a linearization that preserves such structure combined with a structured algorithm for the GEP presents considerable numerical advantages. Block-symmetric linearizations have proven to be very useful for constructing structured linearizations of structured matrix polynomials. In this scenario, we analyze the eigenvalue condition numbers and backward errors of approximated eigenpairs of a block symmetric linearization that was introduced by Fiedler (Linear Algebra Appl 372:325-331, 2003) for scalar polynomials and generalized to matrix polynomials by Antoniou and Vologiannidis (Electron J Linear Algebra 11:78-87, 2004). This analysis reveals that such linearization has much better numerical properties than any other block-symmetric linearization analyzed so far in the literature, including those in the well known vector space of block-symmetric linearizations. The main drawback of the analyzed linearization is that it can be constructed only for matrix polynomials of odd degree, but we believe that it will be possible to extend its use to even degree polynomials via some strategies in the near future.
dc.format.extent 43
dc.language.iso eng
dc.publisher Springer Nature
dc.rights © 2018, Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche
dc.subject.other Backward error of an approximate eigenpair
dc.subject.other Block-symmetric linearization
dc.subject.other Conditioning of an eigenvalue
dc.subject.other Eigenvalue
dc.subject.other Eigenvector
dc.subject.other Linearization
dc.subject.other Matrix polynomial
dc.subject.other Strong linearization
dc.title A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error
dc.type article
dc.subject.eciencia Matemáticas
dc.identifier.doi https://doi.org/10.1007/s10092-018-0273-4
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. MTM2015-65798-P
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 1
dc.identifier.publicationissue 3
dc.identifier.publicationlastpage 43
dc.identifier.publicationtitle Calcolo
dc.identifier.publicationvolume 55
dc.identifier.uxxi AR/0000021689
dc.contributor.funder Ministerio de Economía y Competitividad (España)
dc.affiliation.dpto UC3M. Departamento de Matemáticas
dc.affiliation.grupoinv UC3M. Grupo de Investigación: Matemática Aplicada a Control, Sistemas y Señales
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record