dc.contributor.author | Dolz Zaragoza, Manuel Francisco![]() |
dc.contributor.author | Río Astorga, David del![]() |
dc.contributor.author | González Fernández, Francisco Javier![]() |
dc.contributor.author | Carretero Pérez, Jesús![]() |
dc.contributor.author | García Sánchez, José Daniel![]() |
dc.date.accessioned | 2021-01-18T11:14:16Z |
dc.date.available | 2021-01-18T11:14:16Z |
dc.date.issued | 2018-07-11 |
dc.identifier.bibliographicCitation | M. F. Dolz, D. Del Rio Astorga, J. Fernández, J. D. García and J. Carretero, "Towards Automatic Parallelization of Stream Processing Applications" in IEEE Access, vol. 6, pp. 39944-39961, 2018, doi: 10.1109/ACCESS.2018.2855064 |
dc.identifier.issn | 2169-3536 |
dc.identifier.uri | http://hdl.handle.net/10016/31718 |
dc.description.abstract | Parallelizing and optimizing codes for recent multi-/many-core processors have been recognized to be a complex task. For this reason, strategies to automatically transform sequential codes into parallel and discover optimization opportunities are crucial to relieve the burden to developers. In this paper, we present a compile-time framework to (semi) automatically find parallel patterns (Pipeline and Farm) and transform sequential streaming applications into parallel using GrPPI, a generic parallel pattern interface. This framework uses a novel pipeline stage-balancing technique which provides the code generator module with the necessary information to produce balanced pipelines. The evaluation, using a synthetic video benchmark and a real-world computer vision application, demonstrates that the presented framework is capable of producing parallel and optimized versions of the application. A comparison study under several thread-core oversubscribed conditions reveals that the framework can bring comparable performance results with respect to the Intel TBB programming framework. |
dc.description.sponsorship | This work was supported in part by the Spanish Ministerio de Economía y Competitividad through the Project Toward Uni cation of HPC and Big Data Paradigms under Grant TIN2016-79637-P and in part by the EU Project RePhrase: REfactoring Parallel Heterogeneous Resource-Aware Applications under Grant ICT 644235. |
dc.language.iso | eng |
dc.publisher | IEEE Xplore |
dc.rights | Copyright © 2018, IEEE |
dc.rights | Atribución 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ |
dc.subject.other | Refactoring framework |
dc.subject.other | Automatic parallelization |
dc.subject.other | Load-balanced pipeline |
dc.subject.other | Parallel patterns |
dc.title | Towards automatic parallelization of stream processing applications |
dc.type | article |
dc.subject.eciencia | Informática |
dc.identifier.doi | https://doi.org/10.1109/ACCESS.2018.2855064 |
dc.rights.accessRights | openAccess |
dc.relation.projectID | Gobierno de España. TIN2016-79637-P |
dc.relation.projectID | info:eu-repo/grantAgreement/644235/Re-Phrase |
dc.type.version | publishedVersion |
dc.identifier.publicationfirstpage | 39944 |
dc.identifier.publicationlastpage | 39961 |
dc.identifier.publicationtitle | IEEE Access |
dc.identifier.publicationvolume | 6 |
dc.identifier.uxxi | AR/0000021931 |
dc.contributor.funder | European Commission |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) |
dc.affiliation.dpto | UC3M. Departamento de Informática |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Arquitectura de Computadores, Comunicaciones y Sistemas |
The following license files are associated with this item: