Publication:
Zero-phase propagation in realistic plate-type acoustic metamaterials

Thumbnail Image
Identifiers
Publication date
2019-09-23
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
We theoretically, numerically, and experimentally analyze the Density-Near-Zero (DNZ) regime of a one-dimensional acoustic metamaterial. This acoustic metamaterial is composed of thin elastic plates periodically clamped in an air-filled waveguide, and the effective dynamic zero mass density is obtained from the strong dispersion around the bandgaps associated with the resonances of the plates. We emphasize the importance of the impedance mismatch between the acoustic metamaterial and the surrounding waveguide at the frequency of the zero effective density in addition to the consequences of the inherent losses. As a result, the frequency of the zero phase propagation, i.e., the acoustic propagation with zero phase delay, is not exactly the frequency of the zero density and lies in the frequency bandgap where the effective density is negative. Considering these limitations, the zero phase propagation is still experimentally observed and a subwavelength acoustic dipole is numerically designed, thus demonstrating the possible realistic implementations of DNZ acoustic metamaterials.
Description
Keywords
Acoustic waves, Wave mechanics, Viscoelasticity, Acoustic metamaterials, Acoustic phenomena
Bibliographic citation
Applied Physics Letters. (2019). 115(13), 134101, pp.: 1-5.