Citation:
Proceedings of the 25th Annual International Conference on Mobile Computing and Networking (MobiCom'19). New York: ACM, cop. 2019. Article nº 30, [16] pp.
xmlui.dri2xhtml.METS-1.0.item-contributor-funder:
European Commission
Sponsor:
The work of
University Carlos III of Madrid was supported by H2020 5GMoNArch
project (grant agreement no. 761445) and H2020
5G-TOURS project (grant agreement no. 856950). The work
of NEC Laboratories Europe was supported by H2020 5GTRANSFORMER
project (grant agreement no. 761536) and
5GROWTH project (grant agreement no. 856709). The work
of University of Cartagena was supported by Grant AEI/FEDER
TEC2016-76465-C2-1-R (AIM) and Grant FPU14/03701.
The virtualization of radio access networks (vRAN) is the
last milestone in the NFV revolution. However, the complex
dependencies between computing and radio resources make
vRAN resource control particularly daunting. We present
vrAIn, a dynamic resource cThe virtualization of radio access networks (vRAN) is the
last milestone in the NFV revolution. However, the complex
dependencies between computing and radio resources make
vRAN resource control particularly daunting. We present
vrAIn, a dynamic resource controller for vRANs based on
deep reinforcement learning. First, we use an autoencoder
to project high-dimensional context data (traffic and signal
quality patterns) into a latent representation. Then, we use a
deep deterministic policy gradient (DDPG) algorithm based
on an actor-critic neural network structure and a classifier
to map (encoded) contexts into resource control decisions.
We have implemented vrAIn using an open-source LTE
stack over different platforms. Our results show that vrAIn
successfully derives appropriate compute and radio control
actions irrespective of the platform and context: (i) it provides
savings in computational capacity of up to 30% over
CPU-unaware methods; (ii) it improves the probability of
meeting QoS targets by 25% over static allocation policies
using similar CPU resources in average; (iii) upon CPU capacity
shortage, it improves throughput performance by 25%
over state-of-the-art schemes; and (iv) it performs close to optimal
policies resulting from an offline oracle. To the best of
our knowledge, this is the first work that thoroughly studies
the computational behavior of vRANs, and the first approach
to a model-free solution that does not need to assume any
particular vRAN platform or system conditions.[+][-]
Description:
Proceeding of: 25th Annual International Conference on Mobile Computing and Networking (MobiCom'19), October 21-25, 2019, Los Cabos, Mexico.