Rights:
Atribución-NoComercial-SinDerivadas 3.0 España
Abstract:
Los brazos robóticos asistenciales forman parte importante de un grupo de aplicaciones
robóticas que requieren una continua interacción física con el usuario. En la actualidad
este tipo de robot suele garantizar la seguridad de las personas que comparten espLos brazos robóticos asistenciales forman parte importante de un grupo de aplicaciones
robóticas que requieren una continua interacción física con el usuario. En la actualidad
este tipo de robot suele garantizar la seguridad de las personas que comparten espacio con
ellos, gracias a la imposición de un conjunto de restricciones mecánicas y de control, que
habitualmente entran en conflicto con el rendimiento dinámico de los mismos, al menos en
términos de velocidad y carga útil.
Esta tesis aborda los problemas implícitos en el diseño de brazos robóticos asistenciales,
a fin de garantizar un correcto equilibrio entre seguridad y desempeño. Presenta un conjunto
de directrices de diseño y propone métodos adecuados para el modelado dinámico, control y
evaluación de la seguridad durante la interacción con los seres humanos.
Comienza planteando un nuevo modelo de colisión humano-robot, que toma en cuenta la
velocidad relativa, las propiedades elásticas de los materiales y la geometría superficial, tanto
del ser humano como del robot. Este modelo ofrece una medida de la seguridad más acorde
con el tipo de lesiones que pueden ocurrir en la robótica asistencial. Además, facilita una
mejor comprensión de la influencia, que tienen los diferentes parámetros de diseño, en las
lesiones producto de colisiones.
Posteriormente, se realiza un análisis exhaustivo de la influencia que tiene la elasticidad
mecánica articular sobre la seguridad y desempeño de robots asistenciales. Como aporte a
los sistemas mecánicos seguros, se controla y ensaya con un novedoso actuador de rigidez
variable. Además, se diseña y desarrolla un innovador sistema elástico pasivo, que permite
la conveniente programación de los perfiles de rigidez, para maximizar el desempeño y
garantizar la seguridad. Estos mecanismos son validados a través de simulaciones y ensayos
reales sobre un banco de pruebas.
Por último, y con el fin de que los resultados de este trabajo puedan ser utilizados para
una futura estandarización de los parámetros de diseño y evaluación de robots asistenciales
seguros, se resumen una serie de recomendaciones para el análisis de riesgo, el diseño
mecánico y las estrategias de control.[+][-]
Robotic assistance arms are an important part of a group of robotic applications that require
continuous physical interaction with the user. At present, this type of robot usually guarantees
the safety of people who share space with them, thanks to the imposRobotic assistance arms are an important part of a group of robotic applications that require
continuous physical interaction with the user. At present, this type of robot usually guarantees
the safety of people who share space with them, thanks to the imposition of a set of mechanical
and control constraints, which usually conflict with their dynamic performance, at least in
terms of speed and payload.
This thesis addresses the problems implicit in the design of robotic assistance arms, in
order to ensure a correct balance between safety and performance. It presents a set of design
guidelines and proposes suitable methods for its dynamic modeling, control and evaluation
of safety during interaction with humans.
It begins by proposing a new model of human-robot collision, which takes into account
the relative speed, elastic properties of materials and surface geometry, both human and robot.
This model offers a measure of security more in line with the type of injuries that can occur
in robotics assistance. In addition, it facilitates a better understanding of the influence of
different design parameters have on the lesions produced from collisions.
Next, a comprehensive analysis of the influence of mechanical elasticity on the safety and
performance of assistance robots is performed. As a contribution to safe mechanical systems,
it is controlled and tested with a new variable stiffness actuator. In addition, it designs
and develops an innovative passive elastic system, which allows convenient programming
of stiffness profiles, to maximize performance and ensure safety. These mechanisms are
validated through simulations and actual tests on a test bench.
Finally, and in order that the results of this work can be used for a future standardization of
the parameters of design and evaluation of safe assistance robots, a series of recommendations
for the risk analysis, the mechanical design and the strategies are summarized of control.[+][-]