Publication:
Influence of shear plugging in the energy absorbed by thin carbon-fibre laminates subjected to high-velocity impacts

Loading...
Thumbnail Image
Identifiers
Publication date
2013-01
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
This work examines the energy-absorption process in thin woven laminates made from carbon fibres, with the aim of analysing the energy employed in the formation of a shear plug. This study was conducted with a simplified model which considered five energy-absorption mechanisms. The model was validated with experimental tests and numerical simulations, with regard to the residual velocity of the projectile and perforation velocity. The model makes it possible to evaluate the influence of the shear plugging in laminates of different thickness. It has been demonstrated that this energy-absorption mechanism needs to be considered in the analysis. The main energy-absorption mechanisms for impact at low velocity (i.e. below the perforation velocity) are related to the elastic deformation of fibres and shear plugging, whereas when a higher impact velocity is considered (i.e. above the perforation velocity) such mechanisms are related to the acceleration field of the laminate and the shear plugging.
Description
Keywords
Carbon fibre, Laminates, Impact behaviour, Analytical modelling, Shear plugging
Bibliographic citation
Composites Part B: Engineering, Vol. 49, (June 2013), pp. 86-92.