Publication:
Effects of soft and hard magnetic particles on the mechanical performance of ultra-soft magnetorheological elastomers

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Dinámica y Fractura de Elementos Estructuraleses
dc.contributor.authorMoreno Mateos, Miguel Ángel
dc.contributor.authorLópez Donaire, María Luisa
dc.contributor.authorHossain, Mokarram
dc.contributor.authorGarcía González, Daniel
dc.contributor.funderComunidad de Madrides
dc.contributor.funderEuropean Commissionen
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es
dc.date.accessioned2022-06-28T09:15:32Z
dc.date.available2022-06-28T09:15:32Z
dc.date.issued2022-04-25
dc.description.abstractMagnetorheological elastomers (MREs) mechanically respond to external magnetic stimuli by changing their mechanical properties and/or changing their shape. Recent studies have shown the great potential of MREs when manufactured with an extremely soft matrix and soft-magnetic particles. Under the application of an external magnetic field, such MREs present significant mechanical stiffening, and when the magnetic field is off, they show a softer response, being these alternative states fully reversible. Although softmagnetic particles are suitable for their high magnetic susceptibility, they require the magnetic actuation to remain constant in order to achieve the magneto-mechanical stiffening. Here, we present an alternative solution based on hard-magnetic MREs to provide stiffening responses that can be sustained along time without the need of keeping the external magnetic field on. To this end, we manufacture novel extremely soft hardmagnetic MREs (stiffness in the order of 1 kPa) and characterise them under magneto-mechanical shear and confined magnetic expansion deformation modes, providing a comparison framework with the soft-magnetic counterparts. The extremely soft nature of the matrix allows for easily activating the magneto-mechanical couplings under external magnetic actuation. In this regard, we provide a novel approach by setting the magnetic actuation below the fully magnetic saturating field. In addition, free deformation tests provide hints on the microstructural transmission of torques from the hard-magnetic particles to the viscoelastic carrier matrix, resulting in macroscopic geometrical effects and complex functional morphological changes. Keywords: Magnetorheological elastomers (MREs), Magneto-mechanics, Experimental characterisation, Hard-magnetics MRE, Multifunctional materials, Magnetic propertiesen
dc.description.sponsorshipThe authors acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 947723, project: 4D-BIOMAP). The authors acknowledge support from MCIN/ AEI /10.13039/501100011033 under Grant number PID2020- 117894GA-I00. MAMM acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, Spain (FPU19/03874) and DGG acknowledges support from the Talent Attraction grant (CM 2018 - 2018-T2/IND-9992) from the Comunidad de Madrid. MH acknowledges the funding through an EPSRC Impact Acceleration Award (EP/R511614/1).en
dc.identifier.doihttps://doi.org/10.1088/1361-665X/ac6bd3
dc.identifier.issn0964-1726
dc.identifier.publicationtitleSmart Materials and Structuresen
dc.identifier.urihttps://hdl.handle.net/10016/35304
dc.identifier.uxxiAR/0000030682
dc.language.isoeng
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/947723/4D-BIOMAPen
dc.relation.projectIDGobierno de España. FPU19/03874es
dc.relation.projectIDGobierno de España. PID2020-117894GA-I00es
dc.relation.projectIDComunidad de Madrid. CM 2018 - 2018-T2/IND-9992es
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaMaterialeses
dc.titleEffects of soft and hard magnetic particles on the mechanical performance of ultra-soft magnetorheological elastomersen
dc.typepreprint*
dc.type.hasVersionSMUR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Effects_Preprint_2022.pdf
Size:
8.55 MB
Format:
Adobe Portable Document Format
Description: