Publication:
Theory of homogeneous vapour condensation and surface deposition from boundary layers

dc.affiliation.dptoUC3M. Departamento de Matemáticases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Modelización, Simulación Numérica y Matemática Industriales
dc.contributor.authorDurán Camejo, Marioes
dc.contributor.authorLópez Bonilla, Luis Franciscoes
dc.date.accessioned2014-12-02T11:48:13Z
dc.date.available2014-12-02T11:48:13Z
dc.date.issued2012-09
dc.description.abstractHomogeneous condensation of vapours mixed with a carrier gas in the stagnation point boundary layer flow near a cold wall is considered. There is a condensation region near the wall with supersaturated vapour. Assuming that the surface tension times the molecular area is much larger than the thermal energy far from the wall, droplets are nucleated exclusively in a narrow nucleation layer where the Zeldovich flux of clusters surpassing the critical nucleus size is at a maximum. The vapour condenses in the free molecular regime on the droplets, which are thermophoretically attracted to the wall. Unlike the narrow condensation region for heterogeneous condensation on solid particles, in the case of homogeneous condensation the condensation region is wide even when the rate of vapour scavenging by droplets is large. A singular perturbation theory of homogeneous vapour condensation in boundary layer flow approximates very well the vapour and droplet density profiles, the nucleation layer and the deposition rates at the wall for wide ranges of the wall temperature and the scavenging parameter B. A key point in the theory is to select a trial vapour number density profile among a one parameter family of profiles between an upper and a lower bound. The maximum of the Zeldovich flux for supercritical nuclei provides the approximate location of the nucleation layer and an approximate droplet density profile. Then the condensate number of molecules and the vapour density profile are calculated by matched asymptotic expansions that also yield the deposition rates. For sufficiently large wall temperatures, a more precise corrected asymptotic theory is given.en
dc.description.sponsorshipThis work was supported by the Spanish Ministerio de Economía y Competitividad grant FIS2011-28838-C02-01 and by the Autonomous Region of Madrid grant P2009/ENE-1597 (HYSYCOMB).en
dc.description.statusPublicadoes
dc.format.extent26
dc.format.mimetypeapplication/pdf
dc.identifier.bibliographicCitationJournal of Fluid Mechanics (2012), 706, 534-559.en
dc.identifier.doi10.1017/jfm.2012.278
dc.identifier.issn0022-1120 (print)
dc.identifier.issn1469-7645 (online)
dc.identifier.publicationfirstpage534
dc.identifier.publicationlastpage559
dc.identifier.publicationtitleJournal of fluid mechanicsen
dc.identifier.publicationvolume706es
dc.identifier.urihttps://hdl.handle.net/10016/19754
dc.identifier.uxxiAR/0000010263
dc.language.isoeng
dc.publisherCambridge University Pressen
dc.relation.projectIDComunidad de Madrid. S2009/ENE-1597/HYSYCOMBes
dc.relation.projectIDGobierno de España. FIS2011-28838-C02-01
dc.relation.publisherversionhttp://dx.doi.org/10.1017/jfm.2012.278
dc.rights© Cambridge University Press 2012en
dc.rights.accessRightsopen access
dc.subject.ecienciaFísicaes
dc.subject.ecienciaMaterialeses
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.ecienciaQuímicaes
dc.subject.otherBoundary layer structureen
dc.subject.otherCondensation/evaporationen
dc.subject.otherMultiphase flowsen
dc.titleTheory of homogeneous vapour condensation and surface deposition from boundary layersen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
theory_camejo_bonilla_JFM_2012_ps.pdf
Size:
919.67 KB
Format:
Adobe Portable Document Format