Publication:
Multiscale characterization of nano-engineered fiber-reinforced composites: Effect of carbon nanotubes on the out-of-plane mechanical behavior

Loading...
Thumbnail Image
Identifiers
Publication date
2017-04-30
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
The mechanical properties of the matrix and the fiber/matrix interface have a relevant influence over the mechanical properties of a composite. In this work, a glass fiber-reinforced composite is manufactured using a carbon nanotubes (CNTs) doped epoxy matrix. The influence of the CNTs on the material mechanical behavior is evaluated on the resin, on the fiber/matrix interface, and on the composite. On resin, the incorporation of CNTs increased the hardness by 6% and decreased the fracture toughness by 17%. On the fiber/matrix interface, the interfacial shear strength (IFSS) increased by 22% for the nanoengineered composite (nFRC). The influence of the CNTs on the composite behavior was evaluated by through-thickness compression, short beam flexural, and intraply fracture tests. The compressive strength increased by 6% for the nFRC, attributed to the rise of the matrix hardness and the fiber/matrix IFSS. In contrast, the interlaminar shear strength (ILSS) obtained from the short beam tests was reduced by 8% for the nFRC; this is attributed to the detriment of the matrix fracture toughness. The intraply fracture test showed no significant influence of the CNTs on the fracture energy; however, the failure mode changed from brittle to ductile in the presence of the CNTs.
Description
Keywords
Bibliographic citation
Medina, C., Fernandez, E., Salas, A., Naya, F., Molina-Aldereguía, J., Melendrez, M. F. & Flores, P. (2017). Multiscale Characterization of Nanoengineered Fiber-Reinforced Composites: Effect of Carbon Nanotubes on the Out-of-Plane Mechanical Behavior. Journal of Nanomaterials, 2017, 1–9.