Publication: Personalized medicine in surgical treatment combining tracking systems, augmented reality and 3D printing
Loading...
Identifiers
Publication date
2021-10
Defense date
2021-12-17
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In the last twenty years, a new way of practicing medicine has been focusing on the problems and needs of each patient as an individual thanks to the significant advances in healthcare technology, the so-called personalized medicine. In surgical treatments, personalization has been possible thanks to key technologies adapted to the specific anatomy of each patient and the needs of the physicians. Tracking systems, augmented reality (AR), three-dimensional (3D) printing and artificial intelligence (AI) have previously supported this individualized medicine in many ways. However, their independent contributions show several limitations in terms of patient-to-image registration, lack of flexibility to adapt to the requirements of each case, large preoperative planning times, and navigation complexity.
The main objective of this thesis is to increase patient personalization in surgical treatments by combining these technologies to bring surgical navigation to new complex cases by developing new patient registration methods, designing patient-specific tools, facilitating access to augmented reality by the medical community, and automating surgical workflows.
In the first part of this dissertation, we present a novel framework for acral tumor resection combining intraoperative open-source navigation software, based on an optical tracking system, and desktop 3D printing. We used additive manufacturing to create a patient-specific mold that maintained the same position of the distal extremity during image-guided surgery as in the preoperative images. The feasibility of the proposed workflow was evaluated in two clinical cases (soft-tissue sarcomas in hand and foot). We achieved an overall accuracy of the system of 1.88 mm evaluated on the patient-specific 3D printed phantoms. Surgical navigation was feasible during both surgeries, allowing surgeons to verify the tumor resection margin.
Then, we propose and augmented reality navigation system that uses 3D printed surgical guides with a tracking pattern enabling automatic patient-to-image registration in orthopedic oncology. This specific tool fits on the patient only in a pre-designed location, in this case bone tissue. This solution has been developed as a software application running on Microsoft HoloLens. The workflow was validated on a 3D printed phantom replicating the anatomy of a patient presenting an extraosseous Ewing’s sarcoma, and then tested during the actual surgical intervention. The results showed that the surgical guide with the reference marker can be placed precisely with an accuracy of 2 mm and a visualization error lower than 3 mm. The application allowed physicians to visualize the skin, bone, tumor and medical images overlaid on the phantom and patient.
To enable the use of AR and 3D printing by inexperienced users without broad technical knowledge, we designed a step-by-step methodology. The proposed protocol describes how to develop an AR smartphone application that allows superimposing any patient-based 3D model onto a real-world environment using a 3D printed marker tracked by the smartphone camera. Our solution brings AR solutions closer to the final clinical user, combining free and open-source software with an open-access protocol. The proposed guide is already helping to accelerate the adoption of these technologies by medical professionals and researchers.
In the next section of the thesis, we wanted to show the benefits of combining these technologies during different stages of the surgical workflow in orthopedic oncology. We designed a novel AR-based smartphone application that can display the patient’s anatomy and the tumor’s location. A 3D printed reference marker, designed to fit in a unique position of the affected bone tissue, enables automatic registration. The system has been evaluated in terms of visualization accuracy and usability during the whole surgical workflow on six realistic phantoms achieving a visualization error below 3 mm. The AR system was tested in two clinical cases during surgical planning, patient communication, and surgical intervention. These results and the positive feedback obtained from surgeons and patients suggest that the combination of AR and 3D printing can improve efficacy, accuracy, and patients’ experience
In the final section, two surgical navigation systems have been developed and evaluated to guide electrode placement in sacral neurostimulation procedures based on optical tracking and augmented reality. Our results show that both systems could minimize patient discomfort and improve surgical outcomes by reducing needle insertion time and number of punctures. Additionally, we proposed a feasible clinical workflow for guiding SNS interventions with both navigation methodologies, including automatically creating sacral virtual 3D models for trajectory definition using artificial intelligence and intraoperative patient-to-image registration.
To conclude, in this thesis we have demonstrated that the combination of technologies such as tracking systems, augmented reality, 3D printing, and artificial intelligence overcomes many current limitations in surgical treatments. Our results encourage the medical community to combine these technologies to improve surgical workflows and outcomes in more clinical scenarios.
Description
Mención Internacional en el título de doctor
Keywords
3D printing, Surgical navigation, Orthopedic oncology, Augmented reality, Artificial intelligence, Tracking system