Publication:
Vortex configuration flow cell based on low temperature cofired ceramics as a compact chemiluminescence microsystern

dc.affiliation.dptoUC3M. Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Químicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Síntesis y Procesado de Materialeses
dc.contributor.authorIbáñez García, Núria
dc.contributor.authorPuyol, Mar
dc.contributor.authorAzevedo, Carlos M.
dc.contributor.authorMartínez Cisneros, Cynthia Susana
dc.contributor.authorVilluendas, Francisco
dc.contributor.authorGóngora Rubio, M.R.
dc.contributor.authorSeabra, A.C.
dc.contributor.authorAlonso, Julián
dc.date.accessioned2020-10-30T10:03:55Z
dc.date.available2020-10-30T10:03:55Z
dc.date.issued2008-06-12
dc.description.abstractThe integration of optical detection methods in continuous flow microsystems can highly extend their range of application, as long as some negative effects derived from their scaling down can be minimized. Downsizing affects to a greater extent the sensitivity of systems based on absorbance measurements than the sensitivity of those based on emission ones. However, a careful design of the instrumental setup is needed to maintain the analytical features in both cases. In this work, we present the construction and evaluation of a simple miniaturized optical system, which integrates a novel flow cell configuration to carry out chemiluminescence (CL) measurements using a simple photodiode. It consists of a micromixer based on a vortex structure, which has been constructed by means of the low-temperature cofired ceramics (LTCC) technology. This mixer not only efficiently promotes the CL reaction due to the generated high turbulence but also allows the detection to be carried out in the same area, avoiding intensity signal losses. As a demonstration, a flow injection system has been designed and optimized for the detection of cobalt(II) in water samples. It shows a linear response between 2 and 20 muM with a correlation of r > 0.993, a limit of detection of 1.1 muM, a repeatability of RSD = 12.4 %, and an analysis time of 17 s. These results demonstrate the suitability of the proposal to the determination of compounds involved in CL reactions by means of an easily constructed versatile device based on low-cost instrumentation.en
dc.description.sponsorshipThis work was supported by the Spanish "Comisión Interministerial de Ciencia y Tecnología" through Projects CICYT-TEC2006-13907-C04/MIC and PTR1995-0770-OP and Project MEC (PHB2004-0105-PC)-CAPES.en
dc.description.statusPublicadoes
dc.format.extent5
dc.identifier.bibliographicCitationAnalytical Chemistry, (2008), 80(14), pp.: 5320–5324.en
dc.identifier.doihttps://doi.org/10.1021/ac800012q
dc.identifier.issn0003-2700
dc.identifier.publicationfirstpage5320
dc.identifier.publicationissue14
dc.identifier.publicationlastpage5324
dc.identifier.publicationtitleAnalytical Chemistryen
dc.identifier.publicationvolume80
dc.identifier.urihttps://hdl.handle.net/10016/31324
dc.identifier.uxxiAR/0000026042
dc.language.isoengen
dc.publisherAmerican Chemical Societyen
dc.relation.projectIDGobierno de España. CICYT-TEC2006-13907-C04/MICes
dc.relation.projectIDGobierno de España. PTR1995-0770-OPes
dc.relation.projectIDGobierno de España. (PHB2004-0105-PC)-CAPESes
dc.rights© 2008 American Chemical Society.en
dc.rights.accessRightsopen accessen
dc.subject.ecienciaMaterialeses
dc.subject.otherReagentsen
dc.subject.otherSolution chemistryen
dc.subject.otherOptimizationen
dc.subject.otherCobalten
dc.subject.otherManufacturingen
dc.titleVortex configuration flow cell based on low temperature cofired ceramics as a compact chemiluminescence microsysternen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vortex_ACS_2018_ps.pdf
Size:
425.43 KB
Format:
Adobe Portable Document Format