Publication: Performance-aware scheduling of parallel applications on non-dedicated clusters
dc.affiliation.dpto | UC3M. Departamento de Informática | es |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Arquitectura de Computadores, Comunicaciones y Sistemas | es |
dc.contributor.author | Cascajo García, Alberto | |
dc.contributor.author | Expósito Singh, David | |
dc.contributor.author | Carretero Pérez, Jesús | |
dc.contributor.funder | European Commission | en |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) | es |
dc.date.accessioned | 2020-02-06T12:29:46Z | |
dc.date.available | 2020-02-06T12:29:46Z | |
dc.date.issued | 2019-09-02 | |
dc.description | ASPIDE: Exascale programIng models for extreme data processing | en |
dc.description.abstract | This work presents a HPC framework that provides new strategies for resource management and job scheduling, based on executing different applications in shared compute nodes, maximizing platform utilization. The framework includes a scalable monitoring tool that is able to analyze the platform's compute node utilization. We also introduce an extension of CLARISSE, a middleware for data-staging coordination and control on large-scale HPC platforms that uses the information provided by the monitor in combination with application-level analysis to detect performance degradation in the running applications. This degradation, caused by the fact that the applications share the compute nodes and may compete for their resources, is avoided by means of dynamic application migration. A description of the architecture, as well as a practical evaluation of the proposal, shows significant performance improvements up to 20% in the makespan and 10% in energy consumption compared to a non-optimized execution. | en |
dc.description.sponsorship | This work was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under the grant TIN2016-79637-P "Towards Unification of HPC and Big Data Paradigms"; and the European Union's Horizon 2020 research and innovation program under Grant No. 801091, project "Exascale programming models for extreme data processing" (ASPIDE). | en |
dc.format.extent | 21 | es |
dc.identifier.bibliographicCitation | Electronics, 2019, 8, 982, 21 pp. | en |
dc.identifier.doi | https://doi.org/10.3390/electronics8090982 | |
dc.identifier.issn | 2079-9292 | |
dc.identifier.publicationfirstpage | 1 | es |
dc.identifier.publicationissue | 9 (982) | es |
dc.identifier.publicationlastpage | 21 | es |
dc.identifier.publicationtitle | Electronics | en |
dc.identifier.publicationvolume | 8 | es |
dc.identifier.uri | https://hdl.handle.net/10016/29648 | |
dc.identifier.uxxi | AR/0000024221 | |
dc.language.iso | eng | en |
dc.publisher | MDPI | en |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/801091/ASPIDE | en |
dc.relation.projectID | Gobierno de España. TIN2016-79637-P | es |
dc.rights | © 2019 by the authors. Licensee MDPI, Basel, Switzerland | en |
dc.rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license | en |
dc.rights | Atribución 3.0 España | * |
dc.rights.accessRights | open access | en |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject.eciencia | Informática | es |
dc.subject.other | Scalable tools | en |
dc.subject.other | Monitoring tools | en |
dc.subject.other | Scheduling | en |
dc.subject.other | Malleability | en |
dc.title | Performance-aware scheduling of parallel applications on non-dedicated clusters | en |
dc.type | research article | * |
dc.type.hasVersion | VoR | * |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- performance_ELECTRONICS_2019.pdf
- Size:
- 1.1 MB
- Format:
- Adobe Portable Document Format