Publication:
Quantum control of tunable-coupling transmons using dynamical invariants of motion

dc.affiliation.dptoUC3M. Departamento de Físicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Materiales Nano-Estructurados y Multifuncionaleses
dc.contributor.authorEspinós, H.
dc.contributor.authorPanadero, I.
dc.contributor.authorGarcía-Ripoll, J.J.
dc.contributor.authorTorrontegui Muñoz, Erik
dc.contributor.funderComunidad de Madrides
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es
dc.date.accessioned2023-04-13T12:21:11Z
dc.date.available2023-04-13T12:21:11Z
dc.date.issued2023-04
dc.description.abstractWe analyze the implementation of a fast nonadiabatic CZ gate between two transmon qubits with tunable coupling. The gate control method is based on a theory of dynamical invariants which leads to reduced leakage and robustness against decoherence. The gate is based on a description of the resonance between the 11 and 20 using an effective Hamiltonian with the six lowest energy states. A modification of the protocol allows us to take into account the higher-order perturbative corrections of this effective model. This enables a gate fidelity several orders of magnitude higher than other quasiadiabatic protocols, with gate times that approach the theoretical limit.en
dc.description.sponsorshipWe acknowledge financial support from the Spanish Government through PGC2018-094792-B-I00 (MCIU/AEI/FEDER,UE), CSIC Research Platform PTI-001, and by Comunidad de Madrid-EPUC3M14 and CAM/FEDER Project No. S2018/TCS-4342 (QUITEMAD-CM). H E acknowledges the Spanish Ministry of Science, Innovation and Universities for funding through the FPU Program (FPU20/03409). E T acknowledges the Ramón y Cajal Program (RYC2020-030060-I).en
dc.format.extent17
dc.identifier.bibliographicCitationEspinós, H., Panadero, I., García-Ripoll, J. J., & Torrontegui, E. (2023). Quantum control of tunable-coupling transmons using dynamical invariants of motion. Quantum science and technology, 8(2), 025017.en
dc.identifier.doihttps://doi.org/10.1088/2058-9565/acbed7
dc.identifier.issn2058-9565
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue2, 025017
dc.identifier.publicationlastpage17
dc.identifier.publicationtitleQuantum Science and Technologyen
dc.identifier.publicationvolume8
dc.identifier.urihttps://hdl.handle.net/10016/37058
dc.identifier.uxxiAR/0000032525
dc.language.isoeng
dc.publisherIOP Scienceen
dc.relation.projectIDComunidad de Madrid. S2018/TCS-4342es
dc.relation.projectIDGobierno de España. PGC2018-094792-B-I00es
dc.relation.projectIDGobierno de España. FPU20/03409es
dc.relation.projectIDComunidad de Madrid. EPUC3M14es
dc.rights© 2023 The Author(s).en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaEnergías Renovableses
dc.subject.ecienciaFísicaes
dc.subject.otherSuperconducting circuitsen
dc.subject.otherQuantum controlen
dc.subject.otherQuantum computingen
dc.titleQuantum control of tunable-coupling transmons using dynamical invariants of motionen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantum_QST_2023.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format