Publication:
Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning

dc.affiliation.dptoUC3M. Departamento de Informáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Arquitectura de Computadores, Comunicaciones y Sistemases
dc.contributor.authorVisuña, Lara
dc.contributor.authorGarcía Blas, Francisco Javier
dc.contributor.authorYang, Dandi
dc.contributor.authorCarretero Pérez, Jesús
dc.contributor.funderEuropean Commissionen
dc.date.accessioned2023-04-24T09:20:01Z
dc.date.available2023-04-24T09:20:01Z
dc.date.issued2022-10-15
dc.description.abstractBackground: Nowadays doctors and radiologists are overwhelmed with a huge amount of work. This led to the effort to design different Computer-Aided Diagnosis systems (CAD system), with the aim of accomplishing a faster and more accurate diagnosis. The current development of deep learning is a big opportunity for the development of new CADs. In this paper, we propose a novel architecture for a convolutional neural network (CNN) ensemble for classifying chest X-ray (CRX) images into four classes: viral Pneumonia, Tuberculosis, COVID-19, and Healthy. Although Computed tomography (CT) is the best way to detect and diagnoses pulmonary issues, CT is more expensive than CRX. Furthermore, CRX is commonly the first step in the diagnosis, so it’s very important to be accurate in the early stages of diagnosis and treatment. Results: We applied the transfer learning technique and data augmentation to all CNNs for obtaining better performance. We have designed and evaluated two different CNN-ensembles: Stacking and Voting. This system is ready to be applied in a CAD system to automated diagnosis such a second or previous opinion before the doctors or radiology’s. Our results show a great improvement, 99% accuracy of the Stacking Ensemble and 98% of accuracy for the the Voting Ensemble. Conclusions: To minimize missclassifications, we included six different base CNN models in our architecture (VGG16, VGG19, InceptionV3, ResNet101V2, DenseNet121 and CheXnet) and it could be extended to any number as well as we expect extend the number of diseases to detected. The proposed method has been validated using a large dataset created by mixing several public datasets with different image sizes and quality. As we demonstrate in the evaluation carried out, we reach better results and generalization compared with previous works. In addition, we make a first approach to explainable deep learning with the objective of providing professionals more information that may be valuable when evaluating CRXs.en
dc.description.sponsorshipThis work was supported by the Innovative Medicines Initiative 2 Joint Undertaking (JU) under Grant Agreement No. 853989. The JU receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and Global Alliance for TB Drug Development non-profit organisation, Bill & Melinda Gates Foundation and University of Dundee.en
dc.format.extent16
dc.identifier.bibliographicCitationVisuña, L., Yang, D., Garcia-Blas, J., & Carretero, J. (2022). Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning. BMC Medical Imaging, 22, 178.en
dc.identifier.doihttps://doi.org/10.1186/s12880-022-00904-4
dc.identifier.issn1471-2342
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue178
dc.identifier.publicationlastpage16
dc.identifier.publicationtitleBMC Medical Imagingen
dc.identifier.publicationvolume22
dc.identifier.urihttps://hdl.handle.net/10016/37179
dc.identifier.uxxiAR/0000032298
dc.language.isoeng
dc.publisherBMC
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/GA-853989
dc.rights© The Author(s) 2022.en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaBiología y Biomedicinaes
dc.subject.ecienciaInformáticaes
dc.subject.ecienciaMedicinaes
dc.subject.otherCNNen
dc.subject.otherCovid-19 classificationen
dc.subject.otherDeep ensemble learningen
dc.subject.otherGrad-CAMen
dc.subject.otherStackingen
dc.subject.otherVotingen
dc.titleComputer-aided diagnostic for classifying chest X-ray images using deep ensemble learningen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Computer_BMC-MI_2022.pdf
Size:
3.27 MB
Format:
Adobe Portable Document Format