Publication:
Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.contributor.authorNaya Montans, Fernando
dc.contributor.authorHerráez, M.
dc.contributor.authorLopes, Claudio S.
dc.contributor.authorGonzález, C.
dc.contributor.authorVan Der Veen, S.
dc.contributor.authorPons, F.
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2022-02-07T10:09:33Z
dc.date.available2022-02-07T10:09:33Z
dc.date.issued2017-05-26
dc.description.abstractThe determination of ply properties of Fiber Reinforced Polymers (FRP) for particular operational environmental conditions in aeronautical applications is mandatory in order to fulfill current industry stringent certification requirements. However, the traditional experimental approach requires massive investments of resources and time. From the behaviour obtained experimentally, constitutive equations including failure criteria are then devised to be used in the design of FRP structures. The ply longitudinal behaviour under compression is generally the most difficult to measure and characterize. In this work, an alternative coupled experimental-computational micromechanics approach is proposed to determine the longitudinal compression properties of unidirectional FRP plies under different environmental conditions. This methodology includes experimental characterization of matrix and fiber/matrix interface, combined with numerical simulations of realistic microstructures. The interface decohesion is simulated using cohesive-frictional interactions. A pressure dependent, elasto-plastic model that includes tensile damage is employed to capture the matrix nonlinear behaviour. The numerical predictions match the experimentally-obtained ply properties available in the literature in a remarkable way and suggest that virtual ply property characterization is a mature and reliable approach to conduct screening of materials.en
dc.description.sponsorshipThe authors would like to acknowledge the support provided by AIRBUS SAS through the project SIMSCREEN (Simulation for Screening Composite Materials Properties). Additionally, C.S. Lopes acknowledges the support of the Spanish Ministry of Economy and Competitiveness (RYC-2013-14271) through the Ramón y Cajal program. The collaboration with NASA Langley Research Center in some aspects of this work is also acknowledged.en
dc.format.extent10
dc.identifier.bibliographicCitationNaya, F., Herráez, M., Lopes, C., González, C., van der Veen, S. & Pons, F. (2017). Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions. Composites Science and Technology, 144, 26–35.en
dc.identifier.doihttps://doi.org/10.1016/j.compscitech.2017.03.014
dc.identifier.issn0266-3538
dc.identifier.publicationfirstpage26
dc.identifier.publicationlastpage35
dc.identifier.publicationtitleComposites Science and Technologyen
dc.identifier.publicationvolume144
dc.identifier.urihttps://hdl.handle.net/10016/34050
dc.identifier.uxxiAR/0000029111
dc.language.isoengen
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. RYC-2013-14271es
dc.rights© 2017 Elsevier Ltd. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherPolymer-matrix composites (PMCS)en
dc.subject.otherMultiscale modelingen
dc.subject.otherFinite element analysis (FEA)en
dc.subject.otherComputational micromechanicsen
dc.titleComputational micromechanics of fiber kinking in unidirectional FRP under different environmental conditionsen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Computational_CST_2017_ps.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format