Publication:
An adaptive offline implementation selector for heterogeneous parallel platforms

dc.affiliation.dptoUC3M. Departamento de Informáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Arquitectura de Computadores, Comunicaciones y Sistemases
dc.contributor.authorRío Astorga, David del
dc.contributor.authorDolz Zaragoza, Manuel Francisco
dc.contributor.authorSánchez García, Luis Miguel
dc.contributor.authorFernández Muñoz, Javier
dc.contributor.authorGarcía Sánchez, José Daniel
dc.contributor.funderEuropean Commissionen
dc.contributor.funderMinisterio de Economía y Competitividad (España)en
dc.date.accessioned2021-05-27T08:30:35Z
dc.date.available2021-05-27T08:30:35Z
dc.date.issued2018-11-01
dc.description.abstractHeterogeneous Parallel Platforms, Comprising Multiple Processing Units And Architectures, Have Become A Cornerstone In Improving The Overall Performance And Energy Efficiency Of Scientific And Engineering Applications. Nevertheless, Taking Full Advantage Of Their Resources Comes Along With A Variety Of Difficulties: Developers Require Technical Expertise In Using Different Parallel Programming Frameworks And Previous Knowledge About The Algorithms Used Underneath By The Application. To Alleviate This Burden, We Present An Adaptive Offline Implementation Selector That Allows Users To Better Exploit Resources Provided By Heterogeneous Platforms. Specifically, This Framework Selects, At Compile Time, The Tuple Device-Implementation That Delivers The Best Performance On A Given Platform. The User Interface Of The Framework Leverages Two C&#43 &#43 Language Features: Attributes And Concepts. To Evaluate The Benefits Of This Framework, We Analyse The Global Performance And Convergence Of The Selector Using Two Different Use Cases. The Experimental Results Demonstrate That The Proposed Framework Allows Users Enhancing Performance While Minimizing Efforts To Tune Applications Targeted To Heterogeneous Platforms. Furthermore, We Also Demonstrate That Our Framework Delivers Comparable Performance Figures With Respect To Other Approaches.en
dc.description.sponsorshipThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work has been partially supported by the Spanish ‘Ministerio de Economía y Competitividad’ under the project grant TIN2016-79637-P ‘Towards Unification of High Performance Computing (HPC) and Big Data Paradigms’ and the EU Projects ICT 644235 ‘RePhrase: REfactoring Parallel Heterogeneous Resource-Aware Applications’ and the FP7 609666 ‘Repara: Reengineering and Enabling Performance And poweR of Applications’.en
dc.identifier.bibliographicCitationdel Rio Astorga D, Dolz MF, Sánchez LM, Fernández J, García JD. An adaptive offline implementation selector for heterogeneous parallel platforms. The International Journal of High Performance Computing Applications. 2018;32(6):854-863en
dc.identifier.doihttps://doi.org/10.1177/1094342017698746
dc.identifier.issn1094-3420
dc.identifier.publicationfirstpage854
dc.identifier.publicationissue6
dc.identifier.publicationlastpage863
dc.identifier.publicationtitleINTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONSen
dc.identifier.publicationvolume32
dc.identifier.urihttps://hdl.handle.net/10016/32768
dc.identifier.uxxiAR/0000020223
dc.language.isoengen
dc.publisherSage journalsen
dc.relation.projectIDGobierno de España. TIN2016-79637-Pes
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/ICT/644235es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/609666es
dc.rights© 2018, SAGE Publicationses
dc.rights.accessRightsopen accessen
dc.subject.ecienciaInformáticaes
dc.subject.otherimplementation selectoren
dc.subject.otherheterogeneous platformsen
dc.subject.otherauto-tuningen
dc.subject.otherc++attributesen
dc.subject.otherc++conceptsen
dc.titleAn adaptive offline implementation selector for heterogeneous parallel platformsen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adaptive_IJHPCA_2018_ps.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description: