Publication:
Gas bubble evolution on microstructured silicon substrates

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.dptoUC3M. Departamento de Ingeniería Aeroespaciales
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería Aeroespaciales
dc.contributor.authorVan Der Linde, Peter
dc.contributor.authorPeñas López, Pablo
dc.contributor.authorMoreno Soto, Álvaro
dc.contributor.authorVan Der Meer, Devaraj
dc.contributor.authorLohse, Detlef
dc.contributor.authorGardeniers, Han
dc.contributor.authorFernández Rivas, David
dc.date.accessioned2022-03-01T15:36:07Z
dc.date.available2022-03-01T15:36:07Z
dc.date.issued2018-12-01
dc.description.abstractThe formation, growth and detachment of gas bubbles on electrodes are omnipresent in electrolysis and other gas-producing chemical processes. To better understand their role in the mass transfer efficiency, we perform experiments involving successive bubble nucleations from a predefined nucleation site which consists of a superhydrophobic pit on top of a micromachined pillar. The experiments on bubble nucleation at these spots permit the comparison of mass transfer phenomena connected to electrolytically generated H-2 bubbles with the better-understood evolution of CO2 bubbles in pressure-controlled supersaturated solutions. In both cases, bubbles grow in a diffusion-dominated regime. For CO2 bubbles, it is found that the growth rate coefficient of subsequent bubbles always decreases due to the effect of gas depletion. In contrast, during constant current electrolysis the bubble growth rates are affected by the evolution of a boundary layer of dissolved H-2 gas near the flat electrode which competes with gas depletion. This competition results in three distinct regimes. Initially, the bubble growth slows down with each new bubble in the succession due to the dominant depletion of the newly-formed concentration boundary layer. In later stages, the growth rate increases due to a local increase of gas supersaturation caused by the continuous gas production and finally levels off to an approximate steady growth rate. The gas transport efficiency associated with the electrolytic bubble succession follows a similar trend in time. Finally, for both H-2 and CO2 bubbles, detachment mostly occurs at smaller radii than theory predicts and at a surprisingly wide spread of sizes. A number of explanations are proposed, but the ultimate origin of the spreading of the results remains elusive.en
dc.description.statusPublicadoes
dc.format.extent10
dc.identifier.bibliographicCitationEnergy & Environmental Science, (2018), 11(12), pp.: 3452-3462en
dc.identifier.doihttps://doi.org/10.1039/C8EE02657B
dc.identifier.issn1754-5692
dc.identifier.publicationfirstpage3452
dc.identifier.publicationissue12
dc.identifier.publicationlastpage3462
dc.identifier.publicationtitleEnergy & Environmental Scienceen
dc.identifier.publicationvolume11
dc.identifier.urihttps://hdl.handle.net/10016/34271
dc.identifier.uxxiAR/0000022549
dc.language.isoengen
dc.publisherRoyal Society of Chemistryen
dc.relation.hasparthttps://www.rsc.org/suppdata/c8/ee/c8ee02657b/c8ee02657b1.pdf
dc.relation.hasparthttps://www.rsc.org/suppdata/c8/ee/c8ee02657b/c8ee02657b2.mp4
dc.relation.hasparthttps://www.rsc.org/suppdata/c8/ee/c8ee02657b/c8ee02657b3.mp4
dc.rights© The Royal Society of Chemistry 2018en
dc.rights.accessRightsopen accessen
dc.subject.ecienciaIngeniería Industriales
dc.subject.ecienciaMaterialeses
dc.subject.otherHydrogen productionen
dc.subject.otherWateren
dc.subject.otherNucleationen
dc.subject.otherDrivenen
dc.subject.otherGrowthen
dc.subject.otherElectrolyzersen
dc.subject.otherPerfomanceen
dc.subject.otherDetachmenten
dc.subject.otherKineticsen
dc.titleGas bubble evolution on microstructured silicon substratesen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gas_EES_2018_ps.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format