Publication:
Deep neural networks for the quantile estimation of regional renewable energy production

dc.affiliation.dptoUC3M. Departamento de Informáticaes
dc.affiliation.dptoUC3M. Departamento de Estadísticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Computación Evolutiva y Redes Neuronales (EVANNAI)es
dc.contributor.authorAlcántara Mata, Antonio
dc.contributor.authorGalván, Inés M.
dc.contributor.authorAler, Ricardo
dc.contributor.funderComunidad de Madrides
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es
dc.contributor.funderAgencia Estatal de Investigación (España)es
dc.date.accessioned2022-09-13T09:02:09Z
dc.date.available2022-09-13T09:02:09Z
dc.date.issued2022-08-02
dc.description.abstractWind and solar energy forecasting have become crucial for the inclusion of renewable energy in electrical power systems. Although most works have focused on point prediction, it is currently becoming important to also estimate the forecast uncertainty. With regard to forecasting methods, deep neural networks have shown good performance in many fields. However, the use of these networks for comparative studies of probabilistic forecasts of renewable energies, especially for regional forecasts, has not yet received much attention. The aim of this article is to study the performance of deep networks for estimating multiple conditional quantiles on regional renewable electricity production and compare them with widely used quantile regression methods such as the linear, support vector quantile regression, gradient boosting quantile regression, natural gradient boosting and quantile regression forest methods. A grid of numerical weather prediction variables covers the region of interest. These variables act as the predictors of the regional model. In addition to quantiles, prediction intervals are also constructed, and the models are evaluated using different metrics. These prediction intervals are further improved through an adapted conformalized quantile regression methodology. Overall, the results show that deep networks are the best performing method for both solar and wind energy regions, producing narrow prediction intervals with good coverage.en
dc.description.sponsorshipThis publication is part of the I+D+i project PID2019-107455RB-C22, funded by MCIN /AEI / 10.13039 / 501100011033. This work was also supported by the Comunidad de Madrid Excellence Program.en
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.en
dc.format.extent36
dc.identifier.bibliographicCitationAlcántara, A., Galván, I.M. & Aler, R. Deep neural networks for the quantile estimation of regional renewable energy production. Appl Intell (2022). https://doi.org/10.1007/s10489-022-03958-7en
dc.identifier.doihttps://doi.org/10.1007/s10489-022-03958-7
dc.identifier.issn0924-669X
dc.identifier.publicationtitleAPPLIED INTELLIGENCEen
dc.identifier.urihttps://hdl.handle.net/10016/35678
dc.identifier.uxxiAR/0000031059
dc.language.isoengen
dc.publisherSpringeren
dc.relation.projectIDGobierno de España. PID2019-107455RB-C22es
dc.relation.projectIDAT-2022es
dc.rights© The Author(s) 2022en
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subject.ecienciaInformáticaes
dc.subject.otherdeep neural networksen
dc.subject.otherprediction intervalsen
dc.subject.otherprobabilistic forescastingen
dc.subject.otherquantile estimationen
dc.subject.otherregional renewable energy forescastingen
dc.titleDeep neural networks for the quantile estimation of regional renewable energy productionen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
deep_AI_2022.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description: