Publication:
Introduction to an exergy-based socioeconomic analysis

Loading...
Thumbnail Image
Identifiers
Publication date
2021-12-01
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
This study introduces and validates an exergy-based, socioeconomic (ESEC) analysis that couples economic expressions of environmental impacts (external costs) with conventional costs and thermodynamics. The ESEC analysis improves on previous approaches by combining disparate analyses into one framework based on monetary costs, which facilitates robust, multi-criteria optimization of energy-conversion systems. As a proof of concept, it is applied to a combined-cycle power plant (reference plant) and a power plant with chemical looping combustion (CLC plant). The results show good agreement with the results of the individual exergoeconomic and exergoenvironmental analyses. Nevertheless, the analysis shows some bias towards the economic results, which reveals a higher inherent weight of that component of the evaluation. Critically, the consideration of the costs of environmental impacts through the ESEC analysis produces a significant shift in the comparative performance of the plants. The relative increase in the levelized cost of electricity of the CLC plant compared to the reference plant falls from 23.4% to 7.2% when external costs are included. This reveals a strong effect of the environmental impacts on the overall outcome and shows the potential importance of their inclusion in design evaluations for policy and decision making.
Description
Keywords
External costs, Energy systems, Power plants, Exergy, Socioeconomic, Life cycle assessment (LCA)
Bibliographic citation
Energy Conversion and Management, (2021), 249:114853.