Publication:
Optimal design and deorbiting performance of thermionic tethers in geostationary transfer orbits

dc.affiliation.dptoUC3M. Departamento de Ingeniería Aeroespaciales
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería Aeroespaciales
dc.contributor.authorSánchez Arriaga, Gonzalo
dc.contributor.authorChen, Xin
dc.contributor.authorLorenzini, Enrico C.
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-03-17T12:22:58Z
dc.date.available2021-03-17T12:22:58Z
dc.date.issued2017-03-01
dc.description.abstractThe application of a recent concept, a thermionic bare tether (that is, a long conductor coated with a thermionic material), to a practical engineering problem (deorbit space debris from geostationary transfer orbit) is presented. Lorentz drag on a thermionic bare tether, during each pass through an arc close to the perigee, lowers the apogee progressively and produces the object reentry. The performance of a spacecraft equipped with a thermionic bare tether is studied at two different levels, using models that couple thermal and electrical effects. In first place, a simple formula for the eccentricity decrement produced during each perigee pass as a function of TBT properties is derived and used to select TBT optimal dimensions. For a given tether mass, the formula shows that long tethers with small cross-section areas, but large enough to accomplish mechanical constraints, yield the best performance. Second, full numerical simulations of the deorbit maneuver including Lorentz force, air drag, and J2 perturbations are carried out. A spinning thermionic bare tether with a mass of about 16kg, as well as a length, width, and thickness equal to 6 km, 2 cm, and 50 mu m, respectively, passively deorbits a half-ton spacecraft (with a natural deorbit time of about 50 years) in less than six months, without using propellant, expellant, or power supply. The important roles played by the eclipses and the Earth's oblateness on thermionic bare tether performance are highlighted.en
dc.description.sponsorshipThis work was supported by the Ministerio de Economía y Competitividad of Spain (grant no. RYC-2014-15357).en
dc.description.statusPublicadoes
dc.format.extent7
dc.identifier.bibliographicCitationJournal of Propulsion and Power, (March 2017), 33(2), pp.: 425-432en
dc.identifier.doihttps://doi.org/10.2514/1.B36202
dc.identifier.issn0748-4658
dc.identifier.publicationfirstpage425
dc.identifier.publicationissue2
dc.identifier.publicationlastpage432
dc.identifier.publicationtitleJournal of Propulsion and Poweren
dc.identifier.publicationvolume33
dc.identifier.urihttps://hdl.handle.net/10016/32162
dc.identifier.uxxiAR/0000019670
dc.language.isoeng
dc.publisherAmerican Institute of Aeronautics and Astronauticsen
dc.relation.projectIDGobierno de España. RYC-2014-15357es
dc.relation.publisherversionhttps://arc.aiaa.org/doi/10.2514/1.B36202en
dc.rights©2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request.en
dc.rights.accessRightsopen accessen
dc.subject.ecienciaAeronáuticaes
dc.subject.ecienciaAstronomíaes
dc.subject.otherElectrodynamic tethersen
dc.subject.otherTape tethersen
dc.subject.otherEmissionen
dc.subject.otherMissionen
dc.subject.otherProbesen
dc.subject.otherImpacten
dc.subject.otherGeostationary transfer orbiten
dc.subject.otherPerigeeen
dc.subject.otherEarthen
dc.subject.otherLorentz forceen
dc.subject.otherPropellanten
dc.subject.otherSpace debrisen
dc.subject.otherPower suppliesen
dc.subject.otherNumerical simulationen
dc.subject.otherEclipsesen
dc.subject.otherElectron semperatureen
dc.titleOptimal design and deorbiting performance of thermionic tethers in geostationary transfer orbitsen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
optimal_JPP_2017_ps.pdf
Size:
807.47 KB
Format:
Adobe Portable Document Format