Publication:
Direct estimation of prediction intervals for solar and wind regional energy forecasting with deep neural networks

dc.affiliation.dptoUC3M. Departamento de Informáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Computación Evolutiva y Redes Neuronales (EVANNAI)es
dc.contributor.authorAlcántara Mata, Antonio
dc.contributor.authorGalván, Inés M.
dc.contributor.authorAler, Ricardo
dc.contributor.funderComunidad de Madriden
dc.contributor.funderUniversidad Carlos III de Madriden
dc.date.accessioned2022-07-28T07:43:14Z
dc.date.available2022-07-28T07:43:14Z
dc.date.issued2022-09-01
dc.description.abstractDeep neural networks (DNN) are becoming increasingly relevant for probabilistic forecasting because of their ability to estimate prediction intervals (PIs). Two different ways for estimating PIs with neural networks stand out: quantile estimation for posterior PI construction and direct PI estimation. The former first estimates quantiles, which are then used to construct PIs, while the latter directly obtains the lower and upper PI bounds by optimizing some loss functions, with the advantage that PI width is directly considered in the optimization process and thus may result in narrower intervals. In this work, two different DNN-based models are studied for direct PI estimation, and compared with DNN for quantile estimation in the context of solar and wind regional energy forecasting. The first approach is based on the recent quality-driven loss and is formulated to estimate multiple PIs with a single model. The second is a novel approach that employs hypernetworks (HN), where direct PI estimation is formulated as a multi-objective problem, returning a Pareto front of solutions that contains all possible coverage-width optimal trade-offs. This formulation allows HN to obtain optimal PIs for all possible coverages without increasing the number of network outputs or adjusting additional hyperparameters, as opposed to the first direct model. Results show that prediction intervals from direct estimation are narrower (up to 20%) than those of quantile estimation, for target coverages 70%–80% for all regions, and also 85%, 90%, and 95% depending on the region, while HN always achieves the required coverage for the higher target coverages.en
dc.description.sponsorshipThis publication is part of the I+D+i project PID2019-107455RBC22, funded by MCIN /AEI/10.13039/501100011033. This work was also supported by the Comunidad de Madrid Excellence Program. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022)en
dc.identifier.bibliographicCitationAlcántara, A., Galván, Inés M., Aler, R. (2022). Direct estimation of prediction intervals for solar and wind regional energy forecasting with deep neural networks. Engineering Applications of Artificial Intelligence, 114, 105128.en
dc.identifier.doihttps://doi.org/10.1016/j.engappai.2022.105128
dc.identifier.issn0952-1976
dc.identifier.publicationtitleENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCEen
dc.identifier.publicationvolume114
dc.identifier.urihttps://hdl.handle.net/10016/35545
dc.identifier.uxxiAR/0000030974
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDGobierno de España. PID2019-107455RB-C22es
dc.relation.projectIDAT-2022es
dc.rights© 2022 The Authors. Published by Elsevier Ltd.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.ecienciaInformáticaes
dc.subject.otherdirect prediction intervals estimationen
dc.subject.otherquantile estimationen
dc.subject.otherdeep neural networksen
dc.subject.otherhypernetworksen
dc.subject.otherregional renewable energy forescastingen
dc.subject.otherprobabilistic forescastingen
dc.titleDirect estimation of prediction intervals for solar and wind regional energy forecasting with deep neural networksen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
direct_EAAI_2022.pdf
Size:
3.43 MB
Format:
Adobe Portable Document Format
Description: