Publication:
Multi-agent system for flood forecasting in Tropical River Basin

dc.contributor.advisorLedezma Espino, Agapito Ismael
dc.contributor.advisorGómez Herrera, Juan Antonio
dc.contributor.authorSimmonds Sheppard, José Antonio
dc.contributor.departamentoUC3M. Departamento de Informáticaes
dc.contributor.tutorLedezma Espino, Agapito Ismael
dc.date.accessioned2022-06-20T12:14:50Z
dc.date.available2022-06-20T12:14:50Z
dc.date.issued2022-03
dc.date.submitted2022-03-24
dc.description.abstractIt is well known, the problems related to the generation of floods, their control, and management, have been treated with traditional hydrologic modeling tools focused on the study and the analysis of the precipitation-runoff relationship, a physical process which is driven by the hydrological cycle and the climate regime and that is directly proportional to the generation of floodwaters. Within the hydrological discipline, they classify these traditional modeling tools according to three principal groups, being the first group defined as trial-and-error models (e.g., "black-models"), the second group are the conceptual models, which are categorized in three main sub-groups as "lumped", "semi-lumped" and "semi-distributed", according to the special distribution, and finally, models that are based on physical processes, known as "white-box models" are the so-called "distributed-models". On the other hand, in engineering applications, there are two types of models used in streamflow forecasting, and which are classified concerning the type of measurements and variables required as "physically based models", as well as "data-driven models". The Physically oriented prototypes present an in-depth account of the dynamics related to the physical aspects that occur internally among the different systems of a given hydrographic basin. However, aside from being laborious to implement, they rely thoroughly on mathematical algorithms, and an understanding of these interactions requires the abstraction of mathematical concepts and the conceptualization of the physical processes that are intertwined among these systems. Besides, models determined by data necessitates an a-priori understanding of the physical laws controlling the process within the system, and they are bound to mathematical formulations, which require a lot of numeric information for field adjustments. Therefore, these models are remarkably different from each other because of their needs for data, and their interpretation of physical phenomena. Although there is considerable progress in hydrologic modeling for flood forecasting, several significant setbacks remain unresolved, given the stochastic nature of the hydrological phenomena, is the challenge to implement user-friendly, re-usable, robust, and reliable forecasting systems, the amount of uncertainty they must deal with when trying to solve the flood forecasting problem. However, in the past decades, with the growing environment and development of the artificial intelligence (AI) field, some researchers have seldomly attempted to deal with the stochastic nature of hydrologic events with the application of some of these techniques. Given the setbacks to hydrologic flood forecasting previously described this thesis research aims to integrate the physics-based hydrologic, hydraulic, and data-driven models under the paradigm of Multi-agent Systems for flood forecasting by designing and developing a multi-agent system (MAS) framework for flood forecasting events within the scope of tropical watersheds. With the emergence of the agent technologies, the "agent-based modeling" and "multiagent systems" simulation methods have provided applications for some areas of hydro base management like flood protection, planning, control, management, mitigation, and forecasting to combat the shocks produced by floods on society; however, all these focused on evacuation drills, and the latter not aimed at the tropical river basin, whose hydrological regime is extremely unique. In this catchment modeling environment approach, it was applied the multi-agent systems approach as a surrogate of the conventional hydrologic model to build a system that operates at the catchment level displayed with hydrometric stations, that use the data from hydrometric sensors networks (e.g., rainfall, river stage, river flow) captured, stored and administered by an organization of interacting agents whose main aim is to perform flow forecasting and awareness, and in so doing enhance the policy-making process at the watershed level. Section one of this document surveys the status of the current research in hydrologic modeling for the flood forecasting task. It is a journey through the background of related concerns to the hydrological process, flood ontologies, management, and forecasting. The section covers, to a certain extent, the techniques, methods, and theoretical aspects and methods of hydrological modeling and their types, from the conventional models to the present-day artificial intelligence prototypes, making special emphasis on the multi-agent systems, as most recent modeling methodology in the hydrological sciences. However, it is also underlined here that the section does not contribute to an all-inclusive revision, rather its purpose is to serve as a framework for this sort of work and a path to underline the significant aspects of the works. In section two of the document, it is detailed the conceptual framework for the suggested Multiagent system in support of flood forecasting. To accomplish this task, several works need to be carried out such as the sketching and implementation of the system’s framework with the (Belief-Desire-Intention model) architecture for flood forecasting events within the concept of the tropical river basin. Contributions of this proposed architecture are the replacement of the conventional hydrologic modeling with the use of multi-agent systems, which makes it quick for hydrometric time-series data administration and modeling of the precipitation-runoff process which conveys to flood in a river course. Another advantage is the user-friendly environment provided by the proposed multi-agent system platform graphical interface, the real-time generation of graphs, charts, and monitors with the information on the immediate event taking place in the catchment, which makes it easy for the viewer with some or no background in data analysis and their interpretation to get a visual idea of the information at hand regarding the flood awareness. The required agents developed in this multi-agent system modeling framework for flood forecasting have been trained, tested, and validated under a series of experimental tasks, using the hydrometric series information of rainfall, river stage, and streamflow data collected by the hydrometric sensor agents from the hydrometric sensors.en
dc.description.abstractComo se sabe, los problemas relacionados con la generación de inundaciones, su control y manejo, han sido tratados con herramientas tradicionales de modelado hidrológico enfocados al estudio y análisis de la relación precipitación-escorrentía, proceso físico que es impulsado por el ciclo hidrológico y el régimen climático y este esta directamente proporcional a la generación de crecidas. Dentro de la disciplina hidrológica, clasifican estas herramientas de modelado tradicionales en tres grupos principales, siendo el primer grupo el de modelos empíricos (modelos de caja negra), modelos conceptuales (o agrupados, semi-agrupados o semi-distribuidos) dependiendo de la distribución espacial y, por último, los basados en la física, modelos de proceso (o "modelos de caja blanca", y/o distribuidos). En este sentido, clasifican las aplicaciones de predicción de caudal fluvial en la ingeniería de recursos hídricos en dos tipos con respecto a los valores y parámetros que requieren en: modelos de procesos basados en la física y la categoría de modelos impulsados por datos. Los modelos basados en la física proporcionan una descripción detallada de la dinámica relacionada con los aspectos físicos que ocurren internamente entre los diferentes sistemas de una cuenca hidrográfica determinada. Sin embargo, aparte de ser complejos de implementar, se basan completamente en algoritmos matemáticos, y la comprensión de estas interacciones requiere la abstracción de conceptos matemáticos y la conceptualización de los procesos físicos que se entrelazan entre estos sistemas. Además, los modelos impulsados por datos no requieren conocimiento de los procesos físicos que gobiernan, sino que se basan únicamente en ecuaciones empíricas que necesitan una gran cantidad de datos y requieren calibración de los datos en el sitio. Los dos modelos difieren significativamente debido a sus requisitos de datos y de cómo expresan los fenómenos físicos. La elaboración de modelos hidrológicos para el pronóstico de inundaciones ha dado grandes pasos, pero siguen sin resolverse algunos contratiempos importantes, dada la naturaleza estocástica de los fenómenos hidrológicos, es el desafío de implementar sistemas de pronóstico fáciles de usar, reutilizables, robustos y confiables, la cantidad de incertidumbre que deben afrontar al intentar resolver el problema de la predicción de inundaciones. Sin embargo, en las últimas décadas, con el entorno creciente y el desarrollo del campo de la inteligencia artificial (IA), algunos investigadores rara vez han intentado abordar la naturaleza estocástica de los eventos hidrológicos con la aplicación de algunas de estas técnicas. Dados los contratiempos en el pronóstico de inundaciones hidrológicas descritos anteriormente, esta investigación de tesis tiene como objetivo integrar los modelos hidrológicos, basados en la física, hidráulicos e impulsados por datos bajo el paradigma de Sistemas de múltiples agentes para el pronóstico de inundaciones por medio del bosquejo y desarrollo del marco de trabajo del sistema multi-agente (MAS) para los eventos de predicción de inundaciones en el contexto de cuenca hidrográfica tropical. Con la aparición de las tecnologías de agentes, se han emprendido algunos enfoques de simulación recientes en la investigación hidrológica con modelos basados en agentes y sistema multi-agente, principalmente en alerta por inundaciones, seguridad y planificación de inundaciones, control y gestión de inundaciones y pronóstico de inundaciones, todos estos enfocado a simulacros de evacuación, y este último no dirigido a la cuenca tropical, cuyo régimen hidrológico es extremadamente único. En este enfoque de entorno de modelado de cuencas, se aplican los enfoques de sistemas multi-agente como un sustituto del modelado hidrológico convencional para construir un sistema que opera a nivel de cuenca con estaciones hidrométricas desplegadas, que utilizan los datos de redes de sensores hidrométricos (por ejemplo, lluvia , nivel del río, caudal del río) capturado, almacenado y administrado por una organización de agentes interactuantes cuyo objetivo principal es realizar pronósticos de caudal y concientización para mejorar las capacidades de soporte en la formulación de políticas a nivel de cuenca hidrográfica. La primera sección de este documento analiza el estado del arte sobre la investigación actual en modelos hidrológicos para la tarea de pronóstico de inundaciones. Es un viaje a través de los antecedentes preocupantes relacionadas con el proceso hidrológico, las ontologías de inundaciones, la gestión y la predicción. El apartado abarca, en cierta medida, las técnicas, métodos y aspectos teóricos y métodos del modelado hidrológico y sus tipologías, desde los modelos convencionales hasta los prototipos de inteligencia artificial actuales, haciendo hincapié en los sistemas multi-agente, como un enfoque de simulación reciente en la investigación hidrológica. Sin embargo, se destaca que esta sección no contribuye a una revisión integral, sino que su propósito es servir de marco para este tipo de trabajos y una guía para subrayar los aspectos significativos de los trabajos. En la sección dos del documento, se detalla el marco de trabajo propuesto para el sistema multi-agente para el pronóstico de inundaciones. Los trabajos realizados comprendieron el diseño y desarrollo del marco de trabajo del sistema multi-agente con la arquitectura (modelo Creencia-Deseo-Intención) para la predicción de eventos de crecidas dentro del concepto de cuenca hidrográfica tropical. Las contribuciones de esta arquitectura propuesta son el reemplazo del modelado hidrológico convencional con el uso de sistemas multi-agente, lo que agiliza la administración de las series de tiempo de datos hidrométricos y el modelado del proceso de precipitación-escorrentía que conduce a la inundación en el curso de un río. Otra ventaja es el entorno amigable proporcionado por la interfaz gráfica de la plataforma del sistema multi-agente propuesto, la generación en tiempo real de gráficos, cuadros y monitores con la información sobre el evento inmediato que tiene lugar en la cuenca, lo que lo hace fácil para el espectador con algo o sin experiencia en análisis de datos y su interpretación para tener una idea visual de la información disponible con respecto a la cognición de las inundaciones. Los agentes necesarios desarrollados en este marco de modelado de sistemas multi-agente para el pronóstico de inundaciones han sido entrenados, probados y validados en una serie de tareas experimentales, utilizando la información de la serie hidrométrica de datos de lluvia, nivel del río y flujo del curso de agua recolectados por los agentes sensores hidrométricos de los sensores hidrométricos de campo.es
dc.description.degreePrograma de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de Madrides
dc.description.responsabilityPresidente: María Araceli Sanchis de Miguel.- Secretario: Juan Gómez Romero.- Vocal: Juan Carlos Corraleses
dc.identifier.urihttps://hdl.handle.net/10016/35189
dc.language.isoengen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaInformáticaes
dc.subject.otherHydrological processesen
dc.subject.otherHydrological modelingen
dc.subject.otherFlood forecastingen
dc.subject.otherArtificial intelligenceen
dc.subject.otherMulti-agent systemsen
dc.titleMulti-agent system for flood forecasting in Tropical River Basinen
dc.typedoctoral thesis*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tesis_jose-antonio_simmonds_sheppard_2022.pdf
Size:
7.49 MB
Format:
Adobe Portable Document Format
Description:
Collections