Publication:
Specific heat effects in two-dimensional shock refractions

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.contributor.authorMartínez Ruiz, Daniel
dc.contributor.authorHuete Ruiz de Lira, César
dc.contributor.authorMartínez Ferrer, P.J.
dc.contributor.authorMira, D.
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es
dc.date.accessioned2022-08-05T11:08:42Z
dc.date.available2022-08-05T11:08:42Z
dc.date.issued2021-01-01
dc.description.abstractCompressible mixtures in supersonic flows are subject to significant temperature changes via shock waves and expansions, which affect several properties of the flow. Besides the widely studied variable transport effects such as temperature-dependent viscosity and conductivity, vibrational and rotational molecular energy storage is also modified through the variation of the heat capacity cp and heat capacity ratio gamma , especially in hypersonic flows. Changes in the composition of the mixture may also modify its value through the species mass fraction Yalfa, thereby affecting the compression capacity of the flow. Canonical configurations are studied here to explore their sharply conditioned mechanical equilibrium under variations of these thermal models. In particular, effects of cp(T , Yalfa) and gamma (T , Yalfa) on the stability of shock-impinged supersonic shear and mixing layers are addressed, on condition that a shock wave is refracted. It is found that the limits defining regular structures are affected (usually broadened out) by the dependence of heat capacities with temperature. Theoretical and high-fidelity numerical simulations exhibit a good agreement in the prediction of regular shock reflections and their post-shock aerothermal properties.en
dc.description.sponsorshipWork produced with the support of a 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation and Project PID2019-108592RB-C41 and PID2019-108592RA-C43 (MICINN/ FEDER, UE). Numerical simulations were carried out on the MareNostrum 4 supercomputer with the Grant RES FI-2019-1-0046. The authors gratefully acknowledge Arnaud Mura, CNRS researcher at Institut PPRIME in France, for the numerical tool CREAMS.en
dc.description.statusPublicadoes
dc.format.extent17
dc.identifier.bibliographicCitationShock Waves, (2021), 31(1), 1-17.en
dc.identifier.doihttps://doi.org/10.1007/s00193-020-00977-6
dc.identifier.issn0938-1287
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue1
dc.identifier.publicationlastpage17
dc.identifier.publicationtitleSHOCK WAVESen
dc.identifier.publicationvolume31
dc.identifier.urihttps://hdl.handle.net/10016/35588
dc.identifier.uxxiAR/0000028086
dc.language.isoengen
dc.publisherSpringeres
dc.relation.projectIDGobierno de España. PID2019-108592RB-C41es
dc.relation.projectIDGobierno de España. PID2019-108592RA-C43es
dc.relation.projectIDGobierno de España. RES FI-2019-1-0046es
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2021.en
dc.rights.accessRightsopen accessen
dc.subject.ecienciaIngeniería Industriales
dc.subject.otherShock wavesen
dc.subject.otherShear layersen
dc.subject.otherSpecific heatsen
dc.subject.otherThermally perfect gasen
dc.subject.otherHypersonic flowen
dc.titleSpecific heat effects in two-dimensional shock refractionsen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
specific_SW_2021_ps.pdf
Size:
1 MB
Format:
Adobe Portable Document Format