Publication:
Quasi-passive optical infrastructure for future 5G wireless networks: pros and cons

dc.affiliation.dptoUC3M. Departamento de Ingeniería Telemáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Network Technologieses
dc.contributor.authorGowda, Apurva Shantharaj
dc.contributor.authorKazovsky, Leonid
dc.contributor.authorWang, Ke
dc.contributor.authorLarrabeiti López, David
dc.date.accessioned2017-11-15T15:46:51Z
dc.date.available2017-11-15T15:46:51Z
dc.date.issued2016-12-01
dc.description.abstractIn this paper, we study the applicability of the quasi-passive reconfigurable (QPAR) device, a special type of quasi-passive wavelength-selective switch with flexible power allocation properties and no power consumption in the steady state, to implement the concept of reconfigurable backhaul for 5G wireless networks. We first discuss the functionality of the QPAR node and its discrete component implementation, scalability, and performance. We present a novel multi-input QPAR structure and the pseudo-passive reconfigurable (PPAR) node, a device with the functionality of QPAR but that is pseudo-passive during steady-state operations. We then propose mesh and hierarchical back-haul network architectures for 5G based on the QPAR and PPAR nodes and discuss potential use cases. We compare the performance of a QPAR-based single-node architecture with state-of-the-art devices. We find that a QPAR node in a hierarchical network can reduce the average latency while extending the reach and quality of service of the network. However, due to the high insertion losses of the current QPAR design, some of these benefits are lost in practice. On the other hand, the PPAR node can realize the benefits practically and is the more energy-efficient solution for high reconfiguration frequencies, but the remote optical node will no longer be passive. In this paper, we discuss the potential benefits and issues with utilizing a QPAR in the optical infrastructure for 5G networks.en
dc.description.sponsorshipThis work has been funded by the Spanish project TIGRE5 CM (grant number S2013/ICE 2919), the EU H2020 5G Crosshaul project (grant number 671598), and the Australian Research Council’s Discovery Early Career Researcher Award (DECRA) funding scheme (project number DE150100924). The authors would also like to acknowledge the support of the Center for Integrated Systems, Stanford University, and Corning Incorporated. for the development of this work.en
dc.format.extent13es
dc.format.mimetypeapplication/pdf
dc.identifier.bibliographicCitationJournal of optical communications and networking, 8(12), B111-B123en
dc.identifier.doihttps://doi.org/10.1364/JOCN.8.00B111
dc.identifier.issn1943-0620
dc.identifier.publicationfirstpageB111es
dc.identifier.publicationissue12es
dc.identifier.publicationlastpageB123es
dc.identifier.publicationtitleJournal of optical communications and networkingen
dc.identifier.publicationvolume8es
dc.identifier.urihttps://hdl.handle.net/10016/25843
dc.identifier.uxxiAR/0000019494
dc.language.isoengen
dc.publisherOptical Society of America (OSA)en
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.projectIDComunidad de Madrid. S2013/ICE 2919 (TIGRE5-CM)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/671598en
dc.rights© 2016 Optical Society of Americaen
dc.rights.accessRightsopen accessen
dc.subject.ecienciaTelecomunicacioneses
dc.subject.otherCircuit-switched networksen
dc.subject.otherMulticast networken
dc.subject.otherNetwork topologyen
dc.subject.otherOptical devicesen
dc.subject.otherPacket-switched networksen
dc.subject.otherWavelength routingen
dc.subject.otherBackhaulen
dc.subject.otherCPRIen
dc.subject.otherRANen
dc.titleQuasi-passive optical infrastructure for future 5G wireless networks: pros and consen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
quasi_JOCN_2016_ps.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format